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Human amnion-derived stem cells (hRADSCs) are referred as the cells of possessing the abilities of self-renew and
differentiation, which are isolated from human amnion and include human amniotic mesenchymal stem cells
(hAMSCs) and human amniotic epithelial stem cells (hAESCSs).

amniotic membrane human amniotic stem cells human amniotic mesenchymal stem cells

human amniotic epithelial stem cells regenerative medicine

| 1. Introduction

Stem cells, defined by dual hallmark features of self-renewal and differentiation potential, can be derived from
embryonic and adult tissues. Stem cells are classified to pluripotent stem cells (PSCs), multipotent stem cells, and
unipotent stem cells based on their developmental potencylll. PSCs are able to form all tissues/cells with distinct
functional properties which depend upon the derived and cultured conditions!2. Embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs) are the two most common types of PSCsEl. Multipotent stem cells, such as
hematopoietic stem cells, are restricted to generating the mature cell types of their tissue of origin and they exist in
the resting state under normal physiologic circumstances and are activated when these tissues receive nociceptive
stimulation®!. Unipotent stem cells possess the capability of self-renewal and limited differentiation potential and
only produce a single cell type. The most typical unipotent stem cells are spermatogonial stem cells, which can
only differentiate into sperm[2. In the early embryo, PSCs represent progenitors for all tissues while later in the
development, tissue-restricted adult stem cells (ASCs), including multipotent stem cells and unipotent stem cells,
give rise to cells with highly specialized functions. Unlike ESCs and iPSCs, tissue-restricted ASCs are limited in
their potency to the cell types of the tissue in which they residel®. ASCs derived from different tissues showed an
attractive application clinically due to their abilities to differentiate into a certain type or a designated type of specific
cells and have little risk of tumorigenicity and immune rejection@EIE, When tissues and organs are damaged,

sufficient tissue-ASCs are essential in maintaining tissue regeneration and functional integrity.

Although researchers have made endless efforts to improve the technologies of ESC and iPSCs, there still are two
prominent hardship, tumorigenicity and low survival rate of transplanted cells/tissues, leading to enormous
challenges in clinical application®@21 |n addition, the differentiation of ESCs and iPSCs to different cells is a
stepwise process that is involved in a combination of transcription factors. During the in vitro inducing process, the
cells generated from transdifferentiation of ESCs or iPSCs may not possess biological function. In addition, ASCs

have also certain limitations, such as the limited pluripotency, the reduced numbers with aging and the ability of the
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restricted expansion in vitro. Some studies have showed that ASCs were not intrinsically immunoprivileged, and
under appropriate conditions, allogeneic ASCs might also induce immune rejection of an allogeneic graft2li3l |n
addition, studies also showed that the gradual accumulation of genetic mutations in human ASCs during life were

able to be transmitted to daughter cells and initiate tumorigenesis4115],

Human amnion-derived stem cells (hADSCs) including human amniotic epithelial stem cells (hAESCs) and human
amniotic mesenchymal stem cells (hnAMSCs) have the great advantages over other stem cells such as renewal,
multi-differentiation potential, no-tumorigenicity, low/no immunogenicity, no ethical or legal concerns and their
potent paracrine effects, especially immunomodulatory effects, making them have a promising source of stem cells

for cell therapy in various diseases18I[71[18],

| 2. Characteristics of Human Amnion-Derived Stem Cells

2.1. Advantages of hADSCs over Other Stem Cells

Placenta is composed of the amnion member, chorionic plate, decidua basalis, chorionic Vvilli,
cotyledons/interuillous space, and placental septa (Figure 1A)8H19 Among these placental components, the
amniotic membrane serves as a suitable raw materials for cell-based therapy due to the large number of cells 22,
The amniotic membrane is a transparent, smooth, avascular and single-layered thin membrane (about 100 pm)
composed of epithelium and mesenchyme. The membrane covers the fetus and holds the amniotic fluidi2dl,
Generally, amnion membrane has five layers including epithelium, basement membrane, compact layer, fibroblast
layer and spongy layer (Figure 1B)22. Epiblast-derived hAMSCs and hypoblast-derived hAESCs are two primary
stem cell types in amniotic membrane which are responsible for the production of extracellular matrix (ECM),
different cytokines and growth factors(&. hAESCs come from the innermost layer of amnion which directly contact
with amniotic fluid and fetus, whereas hAMSCs are scattered in the membranel28l. |solation protocols have been
extensively described for both hAESCs and hAMSCs. Briefly, the amniotic membranes were treated with trypsin-
EDTA for 45-60 min at 37 °C to release hAESCs[23l. Then, the remaining amniotic membranes were digested with
Collagenase IV on a rotator 40 min at 37 °C to isolate hAMSCs[24,
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Figure 1. The anatomy of the human term placenta and amniotic membrane. (A) Schematic section of the human

term placenta; (B) Schematic of amnion structure.

hADSCs are easily isolated and propagated ex vivo. hRAMSCs show a fibroblast-like morphology in culturel24123],
while hAESCs exhibit a cobblestone-like morphology28l. Compared with stem cells from other sources, hADSCs
have the following advantages: (1) Easy to obtain, abundant sources, and no ethical and moral disputes: as the
remaining after fetal birth the amniotic membrane can be used for separation of hAMSCs and hAESCs, which will
not harm the donors; (2) No tumorigenicity: numerous studies showed that hADSCs had no proliferation and
growth on soft agar in vitro, no colonies formed, no teratoma formation after implanting NOD-SCID mice in vivo24!:
(3) Low immunogenicity and high histocompatibility: hADSCs were considered as the immune-privileged cells and
showed remarkable characteristics of low immunogenicity28l27]. hADSCs had a low expression of the major
histocompatibility class | antigen (HLA-ABC), no expressions of the major histocompatibility class Il antigen (HLA-
DR) and B2 microglobulinf28l2330I[31] importantly, the cells did not express HLA-ABC costimulatory molecules such
as CD80, CD86 and CD40B32[E8l |t has been reported that transplantation of hAMSCs into humans to treat
lysosomal diseases showed no obvious rejection4. A recent study also demonstrated that intravenous

administration of hAESCs did not result in haemolysis, allergic reactions, toxicity or tumor formation(32l. Akle et al.
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reported that an immunotype-mismatched human amniotic membrane did not elicit a host immune response when
transplanted under the volunteers’ skin28. However, a few studies have highlighted that human amniotic cells
might not actually be considered immune privileged, but, on the contrary, could stimulate both an innate and

adaptive immune response, indicating that the possible co-immunostimulatory effects of amniotic stem cells24E7],
2.2. The Molecular Markers of hADSCs

Both hAMSCs and hAESCs expressed the classical mesenchymal stem cells (MSCs) markers such as CD90,
CD44, CD73, and CD105[, and lack of cell surface markers such as CD45, CD34, CD45, HLA-CR, CD80, CD86.
The molecular markers of hAMSCs and hAESCs are shown in Table 1. Expressions of MSCs markers in hAMSCs
indicated that the cells possess the attractive clinical benefits of MSCs due to immune-privilege and the ability for

immunomodulation.

Table 1. Expression of markers of human amniotic mesenchymal stem cells and amniotic epithelial stem cells.

The Major
Histocompatibility

Epithelial M(-':Ss;eerr:::lgglr;al Pluripotent Hematopoietic Complex and
hADSCs Markers Markers Markers Marker Their Co- References
Stimulatory
Molecules
Positive Positive Positive Negative Positive Negative
hAESCs Cytokeratin, OCT4, HLA-

E-cadherin, CD29, NANOG, DR, Yang et al.
CD49f, CD166, SSEA4, SRk (SRR HLA- (23]
CD326, TRA-1-60 DQ

CD29, CD44, SSEA-4,
CKI9 ~ CD73,CDY0,  SOX2, oo oo HLADR ~ Wugtal
CD105, OCT-4 '
HLA-
OCT4, DR, .
CK7, E CD29, CD73, NANOG, CD34, CD45 HLA- D8O, L|u[2e_3t] al.
cadherin CD105 ABC
SSEA4 CD86,
CD40
OCT4,
SOX2,
NANOG,
TFE3,
E-cadherin KLF4, Castrgget
al. B4
SSEA3,
SSEA4,
TRA-1-60,
REX1
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The Major
Histocompatibility
Epithelial M;ﬁiﬂf@;wal Pluripotent Hematopoietic Complex and
hADSCs Markers Markers Marker Their Co- References
Markers .
Stimulatory
Molecules
Positive Positive Positive Negative Positive Negative
HLA-
E-cadherin, cogg,lgggo, DP-DQ-
CDA49f, CD146, CD45 HLA-A- DR, Pratama et
CK7, SOGER.D B-C CD80, al. [33]
EpCAM CD29 ’ CD86,
CD40
SSEA3,
. SSEA4, Evron et
Cytokeratin TRA-1-60, CD34 a1, [40]
Oct-4
HLA-
A2
R ' Murphy et
CD29, CD73 cD34,CD45s A HiA- e
ABC al.
DQ,
HLA-DR
CD9, CD10,
CD29, ':)LRA'
CD104, HLA- ’ Banas et
CD4YY CD34, CD45 fEE CD80, o, B
CD86,
CD105, R
CD44
SSEA-3,
SSEA-4, Miki et al.
TRA 1-60, chs4 [41]
TRA 1-81
Cytokeratin €D29, NiﬁI)AfG |_[|)LI§ Yang et al
E-cadherin %%19606’ TRA 1-60, CD34, CD45 HLA- [25]
’ SOX2 DQ
CK19, E- CD29, CD44, SISl Wau et al.
cadherin CD90 Slone CIDE-, [42]
SSEA4,
E-cadherin, CD9, CD24, SSEA-3 CD34 Miki et al.
! 36
SSEA-4, £
TRA 1-60,
TRA 1-81,
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The Major
Histocompatibility

Epithelial M%Stim:g);wal Pluripotent Hematopoietic Complex and
hADSCs Markers Markers Marker Their Co- References
Markers .
Stimulatory
Molecules
Positive Positive Positive Negative Positive Negative
Oct-4,
Nanog
Oct3/4,
Sox2, Klf4, Koike et al.
CD73, CD29, SSEA4, . CD34, CD45 [43]
Myc.
hAMSCs CD29, CD44,
CD49d, SSEA-4,
CcD73, SOX2, CD%&MCE he HLA-DR ~ Vugtal
CD90, OCT-4
CD105
HLA-
CchgbgoD73, N(Zﬁg'é CD34, CD45, HLA- C%';'O Liu and Li
’ ’ CD133 ABC ' et al.[24125]
CD105 SSEA4 CDS86,
CD40
CD44, CD90 . .
L 1 _ B k
CD105, Oct-3/4 CD45,CD34  HAT papr  Cacotond
ABC et al.
CD146
CD90, CD44,
CD73, Prado and
CD166, 2??0'_41’ CD34, CD45 Sugiura et
CD105, al. [45]146]
CD29
gg?g’ gggg' SSEA-4, CD34, CD45, HLA- LA Coppi et
’ ’ i al. (24l
chlot Oct4 CD133 ABC K.
—478.
CD105, CD34 HLA- HLA-DR Borghesi
CD117, ABC et al. 41
Oct-3/4,
CD29, SSEA4, HLA-A, Mihu et al. .
e SOX2, HLA- (48] ial
NRAg‘Xof DI, stem
CD44, CD90, CD31, CD34 Seo et al.
CD105. [49] gtang

LapsuItc vl sulvival, ScTii-iciicvval aliu utliieieiiuauuvll Ul TiippuLailiipal ricuial steiii Lelis vl

embryonic rats cultured in high glucose medium. Am. J. Transl. Res. 2019, 11, 5560-5572.
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Epithelial Messtencr(\:yrITI!al Pluripotent Hematopoietic Complex and
hADSCs Markers MZTk eres Markers Marker Their Co- References
Stimulatory the
Molecules 373.
Positive Positive Positive Negative Positive Negative
CD90 s, R V.,
CD44, CD73, ¢ and
Oct3/4,
CILEL. Sox2, .
CDI0S. 4. sSEA4,  CD34, CD45 Koike etal.
CD29, Nanog hler, S.;
CD49t, TRAl-Gb rom
CD271
em
OCT3/4,
CD44, CD73, C-MYC,
CD90, SOX2, Nogami et .
CD105, NANOG., CD34, CD45 HLA-DR o 50 otic
Vimentin SSEA-3, 9, 2019,
SSEA-4

045230

10. Blum, B.; Benvenisty, N. The tumorigenicity of human embryonic stem cells. Adv. Cancer

Res. 2008, 100, 133-158.

2.3. High Pluripotency of hADSCs
11. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult
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[36]
LR PR BASSTTEIAES SR HRLESHES R LR SRS ARG L ORI R A st =

[24]
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potential of hAMSCs and hAESCs in regenerative medlcine. So far, studies showed that hADSCs were able to
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