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Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of

carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity

are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an

important product of HO-1 activity involved in the regulation of several cellular biological processes. The

macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the

major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of

HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in

response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular

iron concentrations of these cells. 

heme oxygenase-1  iron  macrophages  immunity  inflammation

1. Introduction

Heme oxygenase-1 (HO-1) is an enzyme encoded by the Hmox1 gene and its main function is to degrade heme

molecules into three sub products: carbon monoxide gas (CO), iron (Fe ), and biliverdin; the latter is converted

into bilirubin by the action of biliverdin reductase . Due to its activity in heme metabolism, HO-1 is constitutively

expressed in macrophages from tissues involved in the recycling of erythrocytes and hemoglobin, such as bone

marrow (BM), spleen, and liver . In addition, HO-1 expression can be induced in response to a variety of stress

signals in different cell populations, but specially in macrophages from different tissues of the organism .

Heme, the substrate of HO-1, is a tetrapyrrolic cofactor of extreme importance for living organisms due to its role

as a major oxygen (O ) transporter. Composed of a protoporphyrin IX ring complexed to an iron ion, heme

participates in several functions in the body, such as cellular respiration, electron transport, modulation of reactive

oxygen species, as well as regulation of transcription and gene translation . Heme is synthesized in the

mitochondria and cytosol of developing erythroid progenitor cells and is further conjugated to hemoglobin

molecules, which are abundantly present in mature erythrocytes . However, this molecule is also commonly

found in macrophages that perform the physiological process of recycling senescent red blood cells .

The intracellular accumulation of heme is harmful to the organism and triggers cellular and tissue damage due to

its highly pro-oxidant nature. Genotoxicity, induction of paraptosis in endothelial cells, and consequent dysfunction

in the angiogenesis process are examples of detrimental effects caused by heme accumulation in different cells
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and tissues . HO-1 is widely known for its antioxidant properties and, in this sense, the catalysis of heme

degradation by the enzyme activity alone can be considered as an important antioxidant function of HO-1 

. In humans, HO-1 deficiency induces high sensitivity to oxidative stress, intravascular hemolysis, perturbations

of iron homeostasis, kidney, liver, and endothelial inflammation .

Particularly in macrophages, HO-1 and its products play important roles in the regulation of inflammatory and

immune responses. In fact, HO-1 along with the products CO and biliverdin/bilirubin are classically associated with

the promotion of antioxidant, anti-inflammatory, and immunosuppressive activities in macrophages .

2. Heme Acquisition by Macrophages

2.1. Erythrophagocytosis

Erythrocytes (red blood cells—RBCs) promote the transport of O  for cellular respiration. The average life span of

these cells is approximately 120 days, after which they undergo structural changes and enter senescence .

Senescent RBCs express molecules in their membranes known as “eat me” signals, which will be recognized by

receptors expressed by macrophages, in particular those from the splenic red pulp and liver (Kupffer cells—KCs)

. Some of these signals include: (a) The formation of Band 3 (RBC surface protein) clusters in senescent

RBC membrane, which are bound by naturally occurring antibodies (Nabs) and activate complement, being further

recognized by Fc or C3 receptors in macrophages ; (b) exposure of phosphatidylserine (PS) in the

extracellular portion of the membrane, which can be directly bound by PS receptors in macrophages, such as Tim-

1, Tim,4, CD300, and Stabilin-2, or can bind to GAS-6 or PROS1 that will be further recognized by TAM receptors

in macrophages ; (c) expression of CD47 on the RBC surface and its interaction with

thrombospondin-1 (TSP-1), which bind to the signal-regulatory receptor protein alpha (SIRPα) present in

macrophages . All of those signals trigger the phagocytic machinery of macrophages that result in

phagocytosis of senescent RBC.

2.2. Haptoglobin and Hemopexin

Haptoglobin (Hp) and hemopexin (Hx) are plasma glycoproteins produced mainly by hepatic cells, which retain

high binding affinity with free hemoglobin and heme, respectively . Hp (alpha—2 glycoprotein) is

composed of an alpha and a beta chain with approximately 328–388 amino acids each , while Hx has 439

amino acid residues divided into two homologous domains, N-domain and C-domain, in which both have four-

bladed β-propeller fold helix .

Free hemoglobin in plasma can undergo structural changes caused by H O  that interfere with its internalization by

cells, which causes its accumulation in the blood. The formation of the hemoglobin–Hp complex prevents H O

from modifying amino acids in the beta-globulin chain, thus limiting cross-link reactions that would occur with the

alpha-globulin chain . The Hb–Hp complex is recognized by the CD163 transporter in the surface of monocytes
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and macrophages and is further endocytosed by these cells. Following CD163-mediated internalization,

hemoglobin–Hp complexes will be degraded in the lysosome, resulting in the release of heme molecules .

Hx stably binds free heme at a pH greater than 5.0 and undergoes a conformational change that prevents

additional binding of peptides to its structure, consequently protecting the complex from proteolysis . The Hx–

heme complexes are recognized by the low-density lipoprotein receptor-related protein (LRP)/CD91, which are

present on the surface of macrophages but also in several other cell types, such as fibroblasts, hepatocytes,

neurons, adipocytes, syncytiotrophoblasts, and columnar epithelial cells of the gastrointestinal tract . Following

LRP/CD91-mediated internalization of Hx–heme complexes by endocytosis, Hx is degraded by lysosomal enzymes

releasing the heme molecules and the LRP/CD91 receptor is recycled to the cell surface .

2.3. Autophagy of Hemoproteins and Mitophagy

Hemoproteins/heme proteins comprise a group of more than 2300 proteins that have one or more heme groups in

their structure . They can be classified into different types and contain heme complexed to the amino acids in

different forms as well, such as heme a, heme b, heme c, heme or heme o. Hemoproteins perform different

functions within the cells, which range from transport, storage, and activation of O  molecules; electron transfer;

and substrate for oxidation reactions . Therefore, hemoproteins are normally found in cell cytoplasm and

mitochondria.

In addition to the various forms of heme acquisition, the cell is also able to obtain heme via its synthesis in the

inner membrane of the mitochondrial matrix. Once its production occurs, heme is routed to be incorporated among

the hemoproteins present in the mitochondria and cellular cytoplasm . Thus, it is implied that the process of

autophagy or mitophagy caused by cellular or mitochondrial damage, inflammatory stimuli, or regular processes of

organelle recycling by the cells , can also cause the release of free heme within the cell.

3. Heme Degradation by HO-1 and Iron Release

After heme is released from hemoglobin, Hx–heme complexes or from other hemoproteins in phagolysosomes or

autophagolysosomes, and is transferred to the cytosol by the heme transporters heme-carrier protein 1 (HCP1)

and heme responsive gene 1 protein (HRG1). Following their transport to the cytoplasm, heme molecules are then

metabolized by HO-1, which is anchored to the membranes of the endoplasmic reticulum . As

mentioned previously, HO-1 is constitutively expressed in macrophages involved in the recycling of RBCs in the

liver and the spleen . However, the enzyme expression can also be induced in different cells in the organism in

response to several cellular stressors, such as ultraviolet radiation, endotoxins, heavy metals, physical stress,

heme-containing enzymes, and ROS . The major signaling pathway responsible for the induction of HO-1

expression involves the action of the nuclear transcription factor erythroid 2p45-related factor 2 (Nrf2) . Nrf2 is

normally found in the cytosol in its inactive form, bound to the protein Kelch-like ECH-associated protein 1 (Keap1),

which promotes the ubiquitination of Nrf2 and consequent proteasomal degradation of the transcription factor.

However, under oxidative stress, Keap1 undergoes oxidation of its cysteine residues and releases Nrf2, which
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migrates to the nucleus and binds, in conjunction with small Maf proteins, to stress-responsive DNA sequence

elements (StREs) containing Maf recognition element sequences (MARE). StREs/MARE are present upstream of

the HO-1 gene, and therefore, binding of Nrf2 to these regions, results in induction of enzyme expression 

. In homeostatic conditions, the MARE sequences in HO-1 gene promoter are found complexed to the

transcription repressor Bach1, which prevents the induction of HO-1 expression. However, concurrently to Nrf2

activation, the accumulation of free heme favors the binding of these molecules to Bach1, which results in the

release of this repressor from the MARE regions, therefore promoting expression of HO-1 .

Iron, the third product of heme degradation by HO-1, is an essential ion for the organism. Free Fe2  in the

cytoplasm, also known as labile iron, is involved in several vital processes in the cell, such as cellular respiration,

oxygen sensing and metabolism, cell signaling, energy metabolism, as well as DNA synthesis and repair. However,

free Fe  is highly reactive and can promote the production of ROS by the Fenton reaction, which can

consequently cause oxidative damage to cellular components . Because of that, the cell prevents the cytotoxic

effects of iron by promoting the conversion of Fe  ions to the ferric Fe  form, which is further stored intracellularly,

or by exporting the Fe  to the extracellular environment. Iron storage occurs through a multimeric protein complex

called ferritin (FT), which is composed of heavy (H—ferritin heavy/heart chain—FTH) and light (L—ferritin light/liver

chain—FTL) chains . FTH is responsible for catalyzing Fe  into Fe  by ferroxidase, forming ferrihydrite

aggregates, which are inert and incapable of generating free radicals. FTH chains provide stability to the ferritin

structure but also assist in the formation of inorganic ferrihydrite aggregates. It is estimated that one ferritin

molecule can store as much as 4500 iron atoms . Alternatively, if Fe  is not used by the cell or stored in ferritin

molecules, this ion is directed to be exported out of the cell through the transmembrane transporter ferroportin

(FPN1), encoded by the gene SLC40A1 (Solute Carrier Family 40 Member 1) .

Macrophages can also acquire iron through other ways besides heme metabolization by HO-1. In the serum, iron is

oxidized by ceruplasmin and majorly converted to the Fe  form, which will then be complexed to transferrin (each

transferrin molecule can accommodate two iron ions) . Iron-loaded transferrin is recognized by the transferrin

receptor (TFR) on the surface of macrophages and endocytosed. Inside the endosomal compartment, Fe  is

reduced to ferrous iron (Fe ) by the six-transmembrane epithelial antigen of prostate (STEAP3) enzyme and

further transported into the cytosol through the divalent metal transporter 1 (DMT1), which is a transmembrane

glycoprotein that can only transport iron in its ferrous (Fe ) form. Following this, TFR is subsequently recycled

back to the cell surface . DMT1 is also commonly found in the plasma membrane, where it promotes the

internalization of extracellular free iron ions . In the cell surface, ferric iron is reduced to its ferrous form by

cytochrome B DCYTB and subsequently internalized though DMT1 . Macrophages can further mobilize iron by

nuclear receptor coactivator 4 (NCOA4)-induced autophagy of iron loaded ferritin molecules (ferritinophagy).

Ferritin is then degraded and iron ions are transported to the cytosol through the same mechanisms described

earlier .

HO-1 and FPN1 expression in macrophages play a pivotal role in the systemic iron homeostasis. The genetic

deletion of HO-1 profoundly affects iron levels in the body, causing anemia and iron accumulation inside cells in

several tissues . The deficiency of ferroportin gene in macrophages was also shown to result in the development
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of anemia and iron accumulation in the spleen, liver, and BM . Ferroportin expression can be regulated

transcriptionally or through a post-translational mechanism by the action of hepcidin, a peptide hormone secreted

by liver cells in response to increases in serum iron concentration or inflammation . Hepcidin binds to ferroportin

in the surface of cells and induces its internalization and further degradation. As a consequence, the export of iron

ions to the extracellular environment ceases and the metal accumulates inside the cells. Accordingly,

overproduction of hepcidin leads to tissue iron overload and hypoferremia .

4. Cross Regulation of Iron Homeostasis, Inflammation, and
Immunity

Serum iron levels can regulate the production of hepcidin and consequently, the expression of ferroportin in cell

membranes. High serum iron levels induce the production of hepcidin, which promotes the degradation of

ferroportin and ceases further export of iron to serum, while in situations of low iron levels, hepcidin expression is

suppressed, favoring ferroportin expression and promoting iron export to the circulation . However, hepcidin

production can also be induced in macrophages in response to inflammatory stimuli, the most studied of which is

IL-6 biding to its receptor and subsequent activation of signal transducer and activator of transcription 3 (STAT3)

signaling pathway .

Hepcidin itself has antibacterial properties, however, its main role in the immune response to infectious diseases

has been associated to the induction of nutritional immunity or “hypoferremia of inflammation” . The

production of hepcidin by macrophages and other cells in response to infection-derived stimuli is intended to

decrease ferroportin expression and consequently limit iron bioavailability to pathogens . Armitage et al.

demonstrated that pathogen-derived Toll-like receptor 5 agonists stimulate hepcidin production by leukocytes and

hepatoma cells in an IL-6-dependent manner, while IL-22, an important cytokine produced in response to

extracellular infections, also induces phosphorylation of STAT3 and upregulation of hepcidin production. The

scholars additionally found that following in vivo infection with C. albicans or Influenza A/PR/8/34 virus (H1N1),

hepcidin expression is upregulated causing a decrease in serum iron levels in mice . Intraperitoneal challenge

with Pseudomonas aeruginosa was also shown to induce TLR4-dependent hepcidin expression and consequent

iron deposition in splenic macrophages .

Some of the pro-inflammatory signals that trigger hepcidin production and/or ferroportin downregulation, also

induce the expression of HO-1. Such scenario promotes increased iron release by HO-1-mediated degradation of

heme molecules along with reduced iron export by ferroportin, favoring intracellular iron accumulation. Although

these mechanisms can restrict nutrient iron for extracellular pathogens, they may have the opposite effect in

infections with intracellular microorganisms . In addition, the pro-inflammatory signals that modulate the

expression of HO-1, hepcidin, and ferroportin are also produced in several sterile inflammatory conditions, such as

autoimmune diseases, ischemia-reperfusion injuries and tumors, and, therefore, in all of those conditions,

intracellular iron accumulation can also occur.
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As discussed in the following sections, the fluctuations in intracellular iron levels in response to the mechanisms

discussed above can regulate several intracellular signaling pathways that play important roles in the modulation of

inflammatory and immune responses. Therefore, the crosstalk between iron homeostasis and

inflammatory/immune responses holds promise as an important target for new immunomodulatory therapies.

4.1. Iron Regulation of HIF1α Expression

Hypoxia inducible factors (HIFs) are alpha/beta heterodimeric transcription factors that play critical roles in the

adaptive transcriptional responses to O  deprivation (hypoxia). Under normoxia, the prolyl hydroxylase (PHDs) and

asparaginyl hydroxylase (factor inhibiting HIF—FIH) enzymes use O  as a cofactor in order to catalyze a

hydroxylation reaction in the HIF-α chains that will culminate in their ubiquitination and degradation by the

proteasome . These enzymes can also use Fe  ions as cofactors, and therefore, under hypoxia or iron

depletion, the hydroxylation of HIF-α subunits is inhibited and the expression of the transcription factors as a whole

is stabilized, culminating in the increased expression of genes induced by them .

The expression of HIF-1α, which is widely characterized to play major roles in glycolytic metabolism, apoptosis,

angiogenesis, cellular stress, and inflammation, among other biological processes , is partcularly highly

susceptible to changes in intracellular iron concentration. The chelation of iron by bacterial siderophores, for

example, was demonstrated to be able to induce HIF-1α stabilization and expression independently of hypoxia,

while increases in iron levels induce its degradation by PHDs .

4.2. Iron Regulation of IRPs/IRE Interactions

The iron-regulatory proteins (IRPs) 1 and 2 (IRP1 and IRP2) are mRNA-binding proteins that recognize and

interact with non-coding sequences, known as iron responsive elements (IREs) present at the 3′ or 5′ untranslated

region (UTR) of mRNA transcripts of particular genes, forming conserved RNA stem loop structures. The binding of

IRPs to IREs located at 3′ regions protects the mRNA molecule from degradation and promotes its translation,

while binding of IRPs to IREs at the 5′ regions blocks the translation of mRNA molecules into proteins . Much

of the cellular iron uptake, transport, storage, utilization, and release processes are controlled by the IRP/IRE

system . When intracellular iron is abundant, it binds to IRP1 and alters its conformation, making it incapable of

binding to IREs, while high iron concentrations promote the degradation of IRP2. In situations of low iron tension,

IRP1 is not bound to iron and assumes a conformation with high affinity for the IREs, while expression of IRP2 is

stabilized. Therefore, in cases of intracellular iron accumulation, mRNAs from genes that have IREs at 3′ of UTRs

will be degraded, while those that have IREs at 5′ of UTRs will be translated, due to the absence of IRP binding to

the IREs. When iron tension is low, IRPs are able to bind to IREs, and the opposite effect is observed . The

mRNAs of the iron importer proteins transferrin receptor 1 (TFR1) and DMT1 (SLC11A2) have IREs at 3′ of UTR,

and therefore, their translation is increased when intracellular iron concentration is low and repressed when iron

levels in the cytosol are high. On the other hand, the mRNAs for ferroportin (SLC40A1), as well as the heavy (FTH)

and light (FTL) chains of ferritin have IREs at 5′ of the UTR, which results in induction of translation when

intracellular iron concentration is high and repression at low iron levels . The mRNA of other genes that are
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not involved or at least not exclusively involved in iron homeostasis also have IREs, and therefore, their translation

can be regulated by the IRP/IRE system.

4.3. Iron Induction of ROS Generation by Fenton Reaction

Macrophages produce inflammation-related proteins, such as myeloperoxidase, NADPH oxidase, indoleamine 2,3-

dioxygenase, nitric oxide synthases, or lipoxygenases, all of which contain iron . Moreover, iron induces the

generation of ROS by the Fenton reaction and is also involved in the production of such radicals by the phagocyte

oxidase. NOX2, a NOX family member that is part of the phagocyte oxidase system, is a transmembrane

hemoprotein that uses heme iron to transport electrons across membranes to catalyze the generation of

superoxide (•O ), via the following reaction: O  + •O . When NOX2 accumulates in macrophages, •O  can give rise

to other ROS, such as hydrogen peroxide (H O ), which reacts with iron to generate hydroxide ions (OH ) and

hydroxyl radicals (•OH), leading to the production of hydrogen peroxide radicals (HOO•). This latter step occurs via

two iron-catalyzed reactions, first Fe  + H O  → Fe  + HO  + •OH and second (Fe  + H O  → Fe  + HOO• +

H ). These ROS play a critical role in the destruction of pathogens in phagolysosomes but also support other

macrophage functions, such as disassembling of dying cells internalized by phagocytosis . Accordingly, it was

demonstrated that Fe chelation dramatically exacerbates murine infection with S. typhimurium via inhibition of the

host phagocyte oxidase-dependent respiratory burst and the production of nitrogen radical catalyzed by the

inducible nitric oxide synthase .

4.4. Iron and Polarization of M1 and M2 Macrophages

M1 macrophage polarization is induced in response to Th1 cytokines, such as TNF and IFN-γ, or by bacterial LPS

recognition. These macrophages produce majorly pro-inflammatory cytokines, such as TNF, IL-1α, IL-1β, IL-6, IL-

12, IL-23 and low levels of IL-10. M1 macrophages display potent anti-microbial activity mainly through the

generation of NADPH-oxidase-dependent ROS and iNOS-induced NO production .

M2 macrophages display an anti-inflammatory profile and are polarized in response to Th2 and suppressor

cytokines, such as IL-4, IL-13, and IL-10. IL-33 is another cytokine involved in M2 polarization, through the

amplification of IL-13-induced effects. M2 macrophages are characterized by the high expression of arginase-1

(Arg-1) and production of both IL-10 and TGF-β, while the production of pro-inflammatory cytokines is very low or

absent. M2 macrophages play an important role in the scavenging of cellular debris and apoptotic cells, as well in

the promotion of tissue repair and wound healing, besides displaying pro-angiogenic and pro-fibrotic properties .

Iron overload, induced by treatment with ferric citrate, has been shown to induce M1 polarization in RAW 264.7

macrophages, which was associated with the induction of ROS production in iron-treated cells . In an

experimental model of chronic venous ulcers, the induction of iron overload in macrophages was shown to potently

induce M1 polarization, which was characterized by elevated TNF production and to promote poor wound healing

properties in these cells. In addition, the pro-inflammatory activity of these macrophages promoted DNA damage

and senescence of skin-resident fibroblasts . 

[84]

2 2 2 2

2 2
−

2+
2 2

3+ − 3+
2 2

2+

+

[8][85]

[86]

[87]

[87]

[88]

[89]



Heme Oxygenase-1 and Iron Metabolism Crosstalk in Macrophages | Encyclopedia.pub

https://encyclopedia.pub/entry/24523 8/16

On the contrary, other studies found that the expression of Arg1 and IL-10 along with a series of genes associated

with M2 polarized macrophages, such as Ym1, IL-10, and Stat6, were all upregulated in mice fed with a diet

containing high levels of iron, while mice that were fed a diet poor in iron displayed increased production of pro-

inflammatory cytokines and expression of M1 macrophage markers . Along these same lines, studies employing

experimental in vitro and in vivo models of Salmonella infection have demonstrated that a major mechanism used

by macrophages to restrict infection is to enhance the expression of ferroportin, therefore decreasing the

intracellular iron pool, which also enhances the levels of iNOS expression and NO production in response to the

reduction of intracellular iron concentration .

These studies demonstrate that it is hard to draw a definite conclusion on whether different iron levels can be is

associated with M1 or M2 macrophage phenotypes. Regardless, they clearly demonstrate that the levels of

cytosolic iron can play important roles in the regulation of pro- and anti-inflammatory programs of macrophages.

5. Conclusions

HO-1 plays a key role in maintaining cellular homeostasis, particularly through its anti-inflammatory and antioxidant

properties, which were proven to display several cytoprotective functions throughout the organism . However,

HO-1 activity also results in the release of pro-oxidant ferrous iron (Fe ). In fact, the recycling of iron from heme

molecules in macrophages by the action of HO-1 is the major mechanism used by the organism to acquire the

metal. The coordinated action of HO-1 and the hepcidin/ferroportin axis controls the release of iron to the serum

and/or its retention inside cells to efficiently maintain optimal systemic iron levels .

Alterations in iron homeostasis can have profound impacts on the regulation of inflammation and immune

responses. In particular, the changes in macrophage intracellular iron levels resulting from modulation of HO-1

expression and activity as well as from the transcriptionally or hepcidin production-induced regulation of ferroportin

expression, can impact the activation of microbicidal effector functions as well as cytokine production by these

cells. Given the important role played by macrophages in the pathogenesis of several autoimmune and auto-

inflammatory disorders, as well as in the host response to infectious diseases with different pathogens , the

iron metabolism of macrophages represents a potential target for novel immunomodulatory therapeutic strategies

in these areas. In recent years, several advances have been achieved in the identification of novel inhibitors and

inducers of HO-1 activity as well as in modulators of the hepcidin/ferroportin axis .
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