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Marine bioactive peptides (MBAPs) that are present in many marine species, including fish, sponges,

cyanobacteria, fungi, ascidians, seaweeds, and mollusks, have gained widespread attention for their health-

promoting benefits. MBAPs obtained from marine species have ameliorating potential against many health

conditions, such as hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Various research

studies have indicated that MBAPs can be utilized as novel lead structures for the treatment of HIV in conjunction

with pharmaceuticals and functional foods owing to their potential therapeutic, and antiretroviral (ARV) activities.

bioactive peptides  anti-HIV  drugs  marine organisms  antiretroviral agents

1. Techniques Used for the Commercial Preparation and
Purification of Marine Bioactive Peptides

MBAPs have been extracted from various sources, including fish, algae, crustaceans, and mollusks, in addition to

various marine waste products, such as shells, substandard muscles, viscera, trimmings, and skins . The

bioactive peptides (BAPs) are either procured from proteins during digestion and food processing or are already

present in the products prior to the processing operations . The latter consist of both ribosomal BAPs, as well as

their non-ribosomal counterparts (depsipeptides, cyclic peptides, and non-natural amino acid residues) . Figure

1 is a schematic representation of the stages involved in the preparation and purification of marine peptides.
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Figure 1. Preparation and purification of marine peptides.

Different techniques have been used for the extraction of these peptides, such as organic solvents and

acid/alkaline solutions. Extraction is followed by isoelectric precipitation, although, this results in the production of

peptides with potentially adverse effects on the environment. Additionally, it is often accompanied by a high cost of

production, leading to a longer purification process . Recent research on antimicrobial marine peptides, or their

fractions thereof, are reported to have a molecular weight <10 kDa and a high degree of antimicrobial activity . 

2. Marine Sponge-Derived Bioactive Peptides against HIV

Marine sponges are soft-structured, filter-feeding, bioactive component-rich, aquatic invertebrate parazoans from

the phylum  Porifera, and act as diversified habitats for numerous marine species . Sponges contain diverse

biomolecules of varying chemical and structural characteristics that exhibit various bioactive attributes . This is

proven by the fact that out of nine FDA-approved marine drugs, four are contributed by sponges . Research

reports suggest that many of the bioactive metabolites isolated from sponges are generated by their functional

enzyme clusters and the microorganisms associated with these sponges .

Koshikamides from the sponges of  Theonella  sp. have been reported to exhibit anti-HIV activity. In this regard,

relative to their linear counterparts, the cyclic koshikamides F and H inhibited HIV entry with IC  values of 2.3 and

5.5 µM, respectively, when tested in a single round HIV-1 infectivity assay against a CCR5-using viral envelope 

. Additionally, the peptides were evaluated for their cytotoxicity against various target cell lines, including a

control kidney cell line (BSC-1), a human colon tumor cell line (HCT-116), and the target cell line TZM-bl.

Favorably, neither koshikamide F nor koshikamide H exhibited cytotoxicity toward any of the target cell lines at
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these concentrations . Although, koshikamide H was found to exhibit moderate cytotoxicity against the HCT-116

target cell line with an IC  value of 10 µM . The anti-HIV activity of the cyclic koshikamides F and H has been

attributed to the presence of the 10 AA residue lactone ring in their structures, a characteristic absent in the linear

analogs of these peptides . Furthermore, koshikamide F has been proven to be slightly more potent in terms of

anti-HIV activity, owing to the distinctive macrolactone conformation induced by the presence of the unsaturated

pyrrolidinone residue Apdp .

Depsipeptides (also termed cyclodepsipeptides) with unique non-proteinogenic amino acid combinations inherently

incorporated into their structures are isolated from various species of marine sponges and are of particular interest

as powerful molecules aimed at drug development against HIV . Callipeltin A (source:  Callipelta  sp.

and  Latrunculia  sp.) and neamphamide A (source:  Neamphius huxleyi) have also been proven to prevent the

replication of HIV . Callipeltin A, in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell

viability assay, inhibited HIV-1-induced (Lai strain, X4 tropic) cytopathic effects in CEM4 lymphocytic cell lines at an

EC  value of 0.01 μg/mL, and a TC  value of 0.29 μg/mL . Additionally, the structural similarities to the potent

antiviral family of compounds called didemnins might also imply that callipeltin A possesses anti-HIV activity .

Similarly, neamphamide A demonstrated HIV-inhibitory activity in a 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-

Tetrazolium-5-Carboxanilide (XTT) cell viability assay in a human T-cell line CEM-SS infected with HIV-1  at an

IC  value of 28 nM, and a TC  value of 260 nM . Furthermore, homophymine A, a depsiundecapeptide from a

New Caledonian species of marine sponges,  Homophymia  sp. demonstrated cytoprotective activity against HIV

infection. The anti-HIV activity was evaluated by an XTT cell viability assay in HIV-1-infected cells (IIIB strain). An

assessment at seven days post-infection indicated that the compound inhibited HIV-1 infection production with an

IC  value of 75 nM . Also, a TC  value of 1.19 μM was recorded against host cells when direct cytotoxic

measurements of homophymine A were undertaken .

Anti-HIV activity has also been recorded for mirabamides E–H derived from the marine sponges Stelletta clavosa,

along with the already recognized mirabamides A–D isolated from the sponge  Siliquariaspongia mirabilis. The

activity of mirabamides was tested using HIV-1 neutralization assays against two viral strains, HXB2 (T-cell-tropic)

and SF162 (macrophage-tropic), in addition to an HIV-1 envelope-mediated cell fusion assay to ascertain whether

these peptides act to prevent the entry of the virus during the initial stages of the infection . Mirabamides A,

C, and D exhibited significant inhibitory activity against HXB2 infection of the TZM-bl host cells (involved in the

expression of CXCR4, CCR5, and CD4) with IC   values of 140 nM, 140 nM, and 190 nM, respectively, while

mirabamide B was relatively less effective with an IC  value of >50 μM . Comparatively, mirabamides A, C,

and D were relatively less potent towards SF162 (IC   values of 400 nM, 1 μM, and 1 μM, respectively), while

mirabamide B once again exhibited weak inhibitory activity toward SF162 . As mirabamides A, C, and D have

been found to inhibit HIV in both the aforementioned neutralization and fusion assays, it may be surmised that

these peptides can act at the initial stages of HIV entry into the host cell, preventing viral entry and subsequent

fusion . Likewise, pseudotyped viruses with an enveloped HIV-1 strain when tested in single-round infectivity

assays against the new cyclodepsipeptides mirabamides E–H (isolated from the hairy olives sponge S. clavosa), in

parallel with mirabamide C, exhibited significant antiviral replication activity in genital epithelial cells (expressing

CCR5 and CD4 HIV-1 coreceptors) with IC  values of 121, 62, 68, and 41 nM, for mirabamides E–H, respectively.
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Therefore, these compounds also seem to be inhibitors of viral entry during the initial stages of infection by virtue of

their binding capabilities to the HIV-1 envelope glycoprotein for inhibition of viral fusion into the host cell membrane

.

Along with the previously reported depsipeptides with HIV-inhibitory activity (such as mirabamides) from  S.

clavosa, two new depsipeptides, namely stellettapeptin A (EC : 23 nmol/L) and stellettapeptin B (EC : 27 nmol/L)

were discovered, exhibiting potent HIV-inhibitory activities . The anti-HIV activity of stellettapeptins was

evaluated in an XTT-based cell viability assay by using the human T-cell line CEM-SS infected with HIV-1 . After

an incubation period of 6 days, the incubated compounds were found effective to inhibit the cytopathic effect of

HIV-1. The toxicity of these depsipeptides against the host cells was observed with IC  values of 367 and 373 nM,

respectively .

Microspinosamide, a tridecadepsipeptide from the sponge Sidonops microspinosa,  is another cyclic depsipeptide

with an inhibitory effect against cytopathic action of HIV-1 infection in an in vitro XTT-based assay with an

EC  value of 0.2 μg/mL . Similarly, theopapuamide B, isolated from the bacteria symbiosis sponges Theonella

swinhoei and S. mirabilis exhibited anti-HIV activity in an in vitro single-round HIV-1 infectivity assay against HIV-1

SF162 envelope pseudotyped viruses with an IC   value of 0.8 µg/mL . Celebeside A from  S. mirabilis  has

similarly been attributed with HIV-1 neutralization activity with an IC   value of 1.9 µg/mL in a single-round

infectivity assay .

One of the primary reservoirs of latent infection is the CD4+T cell containing integrated and transcriptionally

silenced HIV-1 proviruses . The activation of these resting cells, particularly after prolonged periods of

dormancy, results in proviral gene expression of HIV-1 and consequent renewal of viral infection . The

increasing emphasis has therefore been on exploring therapeutic interventions aimed at complete elimination of

the latent proviruses (sterilized cure) . Of particular research, interest is what is commonly termed as the ‘shock

and kill’ strategies, whereby the transcription of HIV-1 proviruses present in resting CD4+ T reservoir cells is de-

repressed with the aid of small molecule drugs for the production of replicating virus, which could be inhibited

through simultaneous administration of highly active antiretroviral therapy (HAART) . The identification of various

latency reversal agents (LRAs) capable of activating HIV-1 proviral gene expression from marine sponge Phorbas

sp. has been a significant development in this context . The latency reversal activity in the majority of LRAs can

be attributed to their ability to activate adenosine 3′,5′-monophosphate (AMP), and protein kinase C (PKC)

signaling . The structures of sponge-derived peptides are demonstrated in Figure 2.
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Figure 2. Chemical structures of MBAPs derived from marine sponges. (a) koshikamide F, (b) koshikamide H, (c)

mirabamide A, (d) mirabamide C, (e) mirabamide D, (f) mirabamide E, (g) mirabamide F, (h) mirabamide G, (i)

mirabamide H, (j) stellettapeptin A, (k) stellettapeptin B, (l) homophymine A, (m) callipeltin A, (n) neamphamide A,

and (o) mirabamide B.

3. Marine Cyanobacteria-Associated Compounds with Anti-
HIV Properties

Cyanobacteria are photosynthetic bacteria abundantly observed in nature . They contain a large variety of toxins

along with several bioactive compounds with potential bioactive attributes such as antitumor, anticancer,

antimicrobial, antifungal, anti-inflammatory, and protease inhibition characteristics.

Cyanovirin-N (CV-N), (Figure 2) an 11 kDa protein derived from the cyanobacteria Nostoc ellipsosporum has been

tested as an anti-HIV compound (preclinical development) . The IC /EC   values for native CV-N against

various HIV-1 isolates range between 0.1 and 36.8 nM, while against HIV-2 isolates, the IC /EC  values range

between 2.3 and 7.6 nM . In a recent research study, all three forms (mixed, dimer, monomer) of a
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recombinant version of CV-N (rCV-N) (monomeric mass: 11.962 kDa), exhibited significant anti-HIV activity with an

IC  range of 0.5−5 nM, a therapeutic index (TI) of ~1000–10,000 in vitro, negligible cytotoxicity of approximately 5

μM, and low endotoxins (mixed form refers to a mixture of monomer, dimer and higher-order oligomers together).

TZM-bl cells were infected with HIV-1   for the assessment of anti-HIV activity of the rCV-N forms, while their

cytotoxicity was determined by an MTT cell proliferation assay. This anti-HIV activity can be attributed to the

capability of CV-N to interfere with the fusion of HIV with the CD4+ cell membrane .

CV-N has demonstrated specific and strong interaction capabilities with the viral envelop glycoprotein gp120

through N-linked oligosaccharides with high mannose content, particularly the glycans Man-8 and Man-9 . This

consequently prevents the binding of the gp120 to the host CD4 T-cell receptor, in addition to the chemokine CCR5

and CXCR4 co-receptors, thereby inhibiting both the viral entry and the cell-to-cell fusion and transmission .

Owing to its excellent stability, lower toxicity, broad-spectrum antiviral activities, and highly specific binding to

oligosaccharides, CV-N has the potential to be a class-leading compound for the prevention of sexual transmission

of HIV .

Similarly, microvirin (MV-N), isolated from the bloom-forming cyanobacterium  Microcystis aeruginosa, is another

compound with anti-HIV potential . MV-N is a 14.3 kDa protein and has high specificity for α(1-2)mannobiose at

the termini of branched high mannose-type glycans on the viral surface . MV-N, like CV-N, can neutralize a

broad range of clinical isolates, and laboratory-adapted strains with low nanomolar potency against most HIV-1

group M clades of various subtypes and tropics  with IC  values ranging between 2.1 and 167 nM. MV-N was

much more active against HIV-1 isolates A and B when compared to CV-N . MV-N, therefore, is active in the

reduction of initiation markers, including CD25, CD69, and HLA-DR, preventing the formation of syncytium

between cells infected with HIV-1, and healthy CD4+ T cells, also inhibiting viral replication . Furthermore, as

the research study by Huskens et al. evidenced, MV-N induced negligible cytotoxicity in MT4 and peripheral

mononuclear blood cells (PMBCs) (CC  > 35 μM and CC  > 7 μM,  respectively) compared to a much higher

CC  value in the case of CV-N (CC  of 191 nM and 900 nM in MT-4 cells and PBMCs, respectively) . It can be

inferred, therefore, that MV-N has a greater potency against HIV-1 and a higher safety profile when compared to

CV-N.

Scytovirin (SV-N) is a 9.71 kDa HIV-neutralizing protein initially isolated from the aqueous extracts of the cultured

cyanobacterium, Scytonema varium  . The compound has a high affinity for mannose-rich oligosaccharides on

the gp120 envelope, inducing blockage of the viral entry into the target cell . Potent activity has been

recorded for SV-N against various HIV-1 clinical isolates and laboratory strains, with EC50 values ranging between

0.4 and 394 nM, and 0.3 and 7 nM, respectively . Recombinant SV-N (rSV-N) also inhibited cytopathicity

induced by HIV in side-by-side in vitro XTT-based anti-HIV assays using CEM-SS host cells with an EC  of 4.5

nM, while native SV-N EC   values ranged between 0.3 and 7 nM . The structures of the most active

cyanobacteria-derived peptides are portrayed in Figure 3.
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Figure 3. Chemical structures of MBAPs derived from marine cyanobacteria. (a) microvirin, and (b) scytovirin.
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