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Thin-walled composite plates have been widely used as structural components in various engineering applications

to bear static and dynamic loads. The vibrations caused by the dynamic loads are transmitted to passengers and

precision equipment, which reduces the crew’s comfort, affects normal operations, and shortens the service life of

high-precision equipment. There is a rising demand to design optimal composites that have a superior combination

of high stiffness and exceptional vibration mitigation capability. 

concurrent topology optimization  damping composite materials  dynamic compliance

homogenization  composite plates

1. Introduction

Thin-walled composite plates have been widely used as structural components in various engineering applications

to bear static and dynamic loads. The vibrations caused by the dynamic loads are transmitted to passengers and

precision equipment, which reduces the crew’s comfort, affects normal operations, and shortens the service life of

high-precision equipment . There is a rising demand to design optimal composites that have a superior

combination of high stiffness and exceptional vibration mitigation capability. Over the past few decades, active and

passive methods have been developed to improve the dynamic performance of composite structures .

Among these methods, incorporating a passive damping material layer into the base plates (i.e., free-layer  or

constrained-layer ) is one of the most efficient, robust, and low-cost methods. Intrinsically, the vibration

performance of the composite plates is determined by the properties of the damping materials and their topological

arrangements on the base plates. Conventional design practices for damping composite architectures are focused

on parameter analysis, in which only a few design variables are considered (i.e., the thickness or the size of the

damping layer) . However, these rely heavily on the designers’ intuition and it is hard to obtain the optimal

configurations. These challenges are more notable when optimal microstructural damping configurations and

macroscopic arrangements are simultaneously pursued.

Topology optimization (TO)  is a powerful inverse design technique that does not require predefined shapes.

It can be used to generate a free-form optimal configuration that fulfills the functional requirements quantified by

the objective functions and constraints. A series of TO methods have been developed to design damping

composite structures, which can be broadly classified into two categories: one is to optimize the macrostructure

layout of the damping material on the plates , while the other is focused on optimizing the composite
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architectures in microscale  using the homogenization method . However, most existing

works focus on either the macro- or micro-scale TO. Recent studies show that combining the macrostructure

topology optimization with microscale composite material design can significantly improve structural performance.

Zhu  proposed a concurrent TO strategy to optimize the layout of damping material and the beam size of the

lattice core; however, they did not consider the microstructure design problems of the damping layer. Zhang 

proposed a concurrent TO method to design the free-layer damping structures with a maximum structural modal

loss factor. In addition to the damping performance, the vibration response of the structures controlled by dynamic

stiffness is equally important. To the authors’ knowledge, so far, limited researches have focused on the multi-scale

topology optimization of composite plate structures in a frequency range. In this case, dynamic compliance is often

used as the design objective for vibration response design . In these studies, dynamic

compliance is calculated using proportional damping, which cannot accurately consider the variation of damping

due to the change of damping material configurations.

Figure 1. Two-scale composite plate design. (a) A composite plate consists of a metal panel and periodic damping

composite. (b) Periodic damping composite. (c) Microstructure of the periodic damping composite.

2. Dynamic Compliance of the Composite Plate

2.1. The Complex Stiffness Model for the Damping Material

A complex stiffness model [26] is used to describe the dynamic characteristic of the damping material, which can

be stated as:

(1)

(1)

where E′ and E″ are the storage and loss modulus of the damping material, respectively. η is the loss factor of the

damping material. ζ is the imaginary unit,  .

2.2. Complex Frequency Response of the Composite Plate
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The momentum equation of a structural system under harmonic excitation can be written as:

(2)

(2)

where  M  and  K  are the global mass and stiffness matrices, respectively.  K  is the complex when the structure

contains a damping material with a complex stiffness shown in Equation (1). u  is the displacement vector of the

macrostructure,  f  is the magnitude of the harmonic force, ω  is the excitation frequency of the harmonic force,

and t is time.

The damping characteristic of the metal panel is ignored in this paper since it is negligibly small compared with that

of the damping material. The global stiffness matrix of structure K is expressed as:

(3)

(3)

where the superscript “R” and “I” represent the real and imaginary parts, respectively. The subscripts “p” and “v”

denote the metal panel and the damping composite layer, respectively.

Considering the free vibration of the composite structure, the complex eigenvalue λ  and the eigenvector Φ  can be

expressed as:

(4)

(4)

(5)

(5)

where ω  and η  are the  r-th real eigenvalue and loss factor of the macrostructure. Φ  and Φ  are the real and

imaginary parts of the complex eigenvector, respectively. The eigenvector Φ is normalized to ϕ = {ϕ , ϕ ,…ϕ ,…}.
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Converting the governing equation shown in Equation (2) to the frequency domain leads to:

(6)

(6)

The solution of Equation (6) is:

(7)

(7)

Based on the mode superposition method, the response of structure u is equal to H(ω) when the magnitude of the

harmonic force is a unit load. Then the response can be described as:

(8)

(8)

where  j  is the DoFs of the excitation position, and  k  is the DoFs of the response position. Λ is the number of

eigenfrequencies/eigenmodes that are used to calculate the response. Note that the more eigenmodes used, the

more accurate results obtained. In this study, Λ = 20 is used.

Using the non-normalized eigenvector Φ, Equation (8) can also be expressed as:

(9)

(9)

where m  is the r-th mode mass.

2.3. Dynamic Compliance of the Composite Plate

If the response of the composite plate is obtained, the dynamic compliance can be stated as:
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(10)

(10)

where F is the vector of the applied external load. Due to the complex stiffness matrix, the displacement vector u is

complex, which is expressed as  . Then the dynamic compliance is given by:

(11)

(11)

where C   and C   are the real and imaginary parts of the dynamic compliance, respectively. The 2-norm of the

dynamic compliance of the composite structures can be defined as:

(12)

(12)

According to Equations (6) and (10), compliance can be stated as:

(13)

(13)

The displacement vector is complex, so Equation (13) can be rewritten as:

(14)

(14)

Finally, dynamic compliance C can be stated as:

C = u
T

F

u = uR + ζuI
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(15)

(15)

According to Equation (15), C  and C  are expressed as:

(16)

(16)

(17)

(17)
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