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Human-centered Machine Learning (HCML) is about developing adaptable and usable Machine Learning systems

for human needs while keeping the human/user at the center of the entire product/service development cycle.

human-centered machine learning  HCML  HCAI  human-centered artificial intelligence

Deep Learning

1. Introduction

Human-Centered Machine Learning, also referred to as Human-Centered Artificial Intelligence (HCAI or HAI), is

gaining popularity due to the concerns raised by influential technology firms and research labs about the human

context. A workshop in conjunction with the Conference on Human Factors in Computing Systems in 2016 

explained that HCML should explicitly recognize the human aspect when developing ML models, re-frame machine

learning workflows based on situated human working practices and explore the co-adaptation of humans and

systems. In early 2018, Google Design (https://design.google/library/ux-ai/, accessed on 1 April 2021) published an

article noting that HCML is the User Experience (UX) of AI. Referring to a real consumer ML product, Google

highlighted how ML could focus on human needs while solving them in unique ways that are only possible through

ML. Several research projects (https://hcai.mit.edu/, accessed on 1 April 2021) by the Massachusetts Institute of

Technology (MIT) on self-driving technologies called their approach Human-Centered Artificial Intelligence. The

MIT team recognized both the development of AI systems that are continuously learning from humans and the

parallel creation and fulfillment of a human-robot interaction experience. In 2019, the Stanford Institute for Human-

Centered Artificial Intelligence (https://hai.stanford.edu/, accessed on 1 April 2021) was initiated with the goal of

improving AI research, education, policy, and practice. They recognized the significance of developing AI

technologies and applications that are collaborative, augmentative, and enhance human productivity and quality of

life. A workshop (https://sites.google.com/view/hcml-2019, accessed on 1 April 2021) held in 2019 with the

Conference on Neural Information Processing Systems for Human-Centered Machine Learning focused on the

interpretability, fairness, privacy, security, transparency, accountability, and multi-disciplinary approach of AI

technologies. Started in 2017, Google People + AI Research initiative (https://pair.withgoogle.com/, accessed on 1

April 2021) published a 2019 book presenting guidelines for building human-centered ML systems. This team is

researching the full spectrum of human interactions with machine intelligence to build better AI systems with

people.
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Considering the scope of the HCML/HCAI prior work and publications by leading industry and academic

institutions, we derived a definition for HCML that covers the breadth of this existing work. We validated the

definition using feedback from several researchers working in the same domain and further validated with some

influential researchers in leading academia and industrial institutions’ Human-Centered AI research teams.

Human-centered Machine Learning (HCML): Developing adaptable and usable Machine Learning systems

for human needs while keeping the human/user at the center of the entire product/service development

cycle.

“adaptable” includes adding features such as explainability, interpretability, fairness, privacy, security,

transparency, and accountability. 

“Usable” refers to the UX of AI, including system usability and user burden. 

“Human needs” implies the significance of the problems we are selecting to solve with AI. 

“Entire development cycle” includes all steps from conceptualization to maintenance, which extends from

Human-Centered Design to working systems that are continuously learning. 

There is a natural incentive to research all the principles mentioned previously; however, this is seldom achieved in

practice. In individual research, the entire development life-cycle is only partially detailed, possibly due to emphasis

on the focused technicalities of the research. Therefore, we selected research that demonstrated one or more

design elements matching the above definition of HCML research.

As shown in Figure 1, HCML work lies across many aspects of Machine Learning. We define algorithmic work

related to HCML as Back-End HCML and work with interactions with humans as Front-End HCML. We excluded

algorithm-centric back-end HCML papers as it would divert our focus away from the baseline HCML concepts. For

instance, analyzing and classifying explainability algorithms is beyond this paper’s scope and may be reviewed in

separate works, such as . However, algorithmic contributions with Front-End HCML practices, such as user

evaluations, were included.

Figure 1. Human-Centered Machine Learning (marked with dashed lines) research lays over a broad spectrum, as

shown here. The intersection of Machine Learning Research and Human-Centered Design is the domain we

identify as Human-Centered Machine Learning.
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2. HCML Related Work: Principles and Guidelines

Among the HCML literature, this category pertains to research that compiles design guidelines and principles for

HCML or provides assistance to build HCML products and services. These works stem from different intentions,

such as guidelines for developing intelligent user interfaces, visualization, prototyping, and human concerns in

general. Amershi et al.  present a set of guidelines resulting from a comprehensive study conducted with many

industry practitioners that worked on 20 popular AI products. Some approaches have been focused on deriving

requirements and guidelines for planned sandbox visualization tools . One article highlights guidelines related to

three areas of HCML, ethically aligned design, tech that reflect human intelligence, and human factors design .

Browne et al.  proposed a wizard of oz approach to bridge designers with engineers to build a human-

considerate machine learning system targeting explainability, usability, and understandability. Some papers attempt

to identify what HCML is , and discuss how AI systems should understand the human and vice versa. Apart from

general perspectives, Chancellor et al.  attempted to analyze literature in the mental health-AI domain to

understand which humans are focused on such work and compile guidelines to maintain humans as a priority. In a

slightly different layout, Ehsan et al.  attempted to uncover how to classify human-centered explainable AI in

terms of prioritizing the human. Wang et al.  also tried to design theory driven by a user-centered explainable AI

framework and evaluate a tool developed with actual clinicians. Schlesinger et al.  explored ways to build

chatbots that can handle ‘race-talk’. Long et al.  attempts to define learner-centered AI and figure out design

considerations. Yang et al.  explore insights for designers and researchers to address challenges in human–AI

interaction.

3. The ‘Human’ in HCML Research

[4]
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The main component of HCML is the Human and thus elevating the significance of the human. The ‘Human’ in

HCML is defined across varying ML expertise levels, ranging from no ML background to an expert ML scientist. The

Human in HCML can also be involved in various stages of the ML system development process in different

capacities. For instance, the focus may be on the end-user, the developer, or the investor. One could focus on a

certain user-aspect when developing a product or service ; another could be determining design principles for

a particular ML system optimizing usability and adoptability . The multidimensionality of what is considered

Human within HCML contributes to the complexities within the field.

Considering the works that focused on the user side, some researchers catered to general end-users or

consumers , while others on specific end-users. Examples for these include people who need assistance

, medical professionals , international travelers , Amazon Mechanical

Turk , drivers , musicians , teachers , students , children , UX designers , UI

designers , data analysts , video creators , and game designers . Apart from focusing on

a specific user group, some have tried to understand multiple user-perspectives from ML engineers to the end-user

. Some of the prior works that target the developer as the human focus on novice ML engineers to help them

develop ML systems faster . Notably, the majority of works that target the developer side focused on ML

engineers .

4. Application Domains

Machine Learning works well in many scenarios provided that a relationship exists between the task at hand and

the availability of data. This power of making decisions or predictions based on data has empowered ML to infiltrate

many other domains, such as medicine, pharmacy, law, business, finance, art, agriculture, photography, sports,

education, media, military, and politics. Given that the majority in those sectors are not AI experts developing AI

systems for them requires us to investigate the human aspect of such systems. Our analysis shows that application

domains have specifically targeted gaming , interactive technologies 

, medicine , psychiatry , music , sports , dating

, video production , assistive technologies , education , and

mainly software and ML engineering  based on our selected literature.

5. Features of the Models 

Features of AI models addressing the concerns of users to improve the usability and adoptability of AI systems

such as explainability, interpretability, privacy, and fairness have been the focus of many HCML related work 

. This is not surprising, given the history of XAI research area dates back to

1980s . In a comprehensive study, Bhatt et al.  investigated how explainability is practiced in real-world

industrial AI products and presents how to focus explainability research on the end-user. Focusing on game

designers, Zhu et al.  discuss how explainable AI should work for designers. A study  used 1150 online

drawing platform users and compared two explanation approaches to figure out which approach is better.
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Ashktorab et al.  explored explanations of machine learning algorithms concerning chatbots. Although

explainability is not the main focus, some research  investigated the explainability aspect when developing ML

systems. Another work  tried to investigate who is the human in the center of human-centered explainable AI. In

addition, there exists work that tried to bring a user-centered approach to XAI research . Chexplain 

worked on providing an explainable analysis of chest X-rays to physicians. Das et al.  attempted to improve

humans’ performance by leveraging XAI techniques.

While explainability tries to untangle what is happening inside the Deep Learning black boxes, interpretability

investigates how to make AI systems predictable. For instance, if a certain neural network classifies an MRI image

as cancer, figuring out how the network makes such a decision falls into explainability research. However, an

attempt to build a predictable MRI classification network where a change of network’s parameters results in an

expected outcome falls into interpretability research. There have been attempts  to develop novel

interpretability algorithms using human studies to validate if those algorithms achieved the expected results. Isaac

et al.  studied what matters to the interpretability of an ML system using a human study. Another study 

figured out that ML practitioners often over-trust or misuse interpretability tools.

Apart from these two common DL features, some other work considered the aspects of fairness 

, understandability , and trust . Fairness represents the degree of bias in decisions, such as

gender and ethnic skews, that influence the predictive model. For instance, gender and ethnic biases in the models

can cause serious impacts on certain tasks. Understandability is a slightly different feature from explainability.

While explainability shows how a model makes a certain decision, understandability tries to show how a neural

network works to achieve a task. Trust refers to a subjective concern where the user’s trust towards the decisions

made by a certain model is studied.
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