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Energy production, distribution, and storage remain paramount to a variety of applications that reflect on our daily lives,

from renewable energy systems, to electric vehicles and consumer electronics. Hydrogen is the sole element promising

high energy, emission-free, and sustainable energy, and metal hydrides in particular have been investigated as promising

materials for this purpose. While offering the highest gravimetric and volumetric hydrogen storage capacity of all known

materials, metal hydrides are plagued by some serious deficiencies, such as poor kinetics, high activation energies that

lead to high operating temperatures, poor recyclability, and/or stability, while environmental considerations related to the

treatment of end-of-life fuel disposal are also of concern. Graphene is a 2D material with very appealing properties,

highlighting its potential use as support for various reactive species, including metals and metal hydrides. By embedding

hydride species into graphene supports, valuable nanocomposites can be obtained with direct use for energy storage

applications.
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1. Metal-Decorated Graphene

An important strategy for tuning graphene for energy storage applications has been to decorate the support with metals or

clusters of metals. Among the investigated materials are metallized siligraphene nanosheets (SiG) with varying light metal

decorations (Li, Na, K, Mg, Ca, Sc, Ti) , metal-decorated graphene (Li, Na, Mg)/G, DFT study , or K in K @ B-

substituted G . Given the potential of AlH  for hydrogen storage, Al-doping has also been explored in Al/G composites 

, Al  clusters supported by coronene and graphene G (DFT study) , and Al/Si –SLG (SLG, single layer graphene + Si

+Al) .

Palladium is well known for its high affinity for H , and many studies have been devoted to the theoretical modelling of this

interaction; Pd-decorated N-doped G, DFT study ; Pd  @ G (n = 1–4) in BC3 variant , and Cu- and Pd-decorated G,

DFT study . Titanium and its clusters have also been investigated: Ti  clusters ; Ti —decorated B/N-doped G ; Ti

& Ni –doped G nanoplatelets ; and Ti–Al subnanoclusters on G .

Most reports, however, focus on Mg-doped porous carbonaceous materials, such as Mg@ G flake nanocomposites (H

generation from H O) , Mg@graphite for comparison purposes , Mg@rGO layers , Mg@Heteroatom–doped G

, Mg@B–doped G , and Mg/defected GO . Additionally, various alloys have also been studied for graphene

supports: Mg alloy @rGO–V O  , rGO–EC@AB5 hybrid material (EC = ethyl cellulose, AB5 = La(Ni Fe ) ) (LNF)

, or MmNi Co Mn Al /G nanoplatelets (Mm denotes mischmetals) .

2. Mechanistic Insight and Kinetics of H …Support Interaction

Pristine graphene can chemically absorb H  and its theoretical storage capacity is 7.7 wt.%; the hydrogenated graphene

(graphane, (CH) , a sp  hybridized analog of graphene) releases H (g) at ~400 °C, with an Ea = 158 kJ/mol (1.64 eV) .

While an intriguing material in its pristine form, its thermodynamic parameters make it less feasible for scaling up

processes aimed at vehicular applications; however, it is worth noting the similarity of the activation energy deduced for

graphane and that of metal hydrides.

The fundamental understanding of the adsorption/desorption mechanism of H  in graphene is paramount to developing

new materials aimed at this task; a pertinent comparison between physisorption and chemisorption on graphene was

reported in 2011, where the physical limitations of G (5 wt.% H  storage) were correlated to the entropy contribution TΔS

and the large van der Waals distance between two H  molecules (0.3 nm), further preventing the increase in gravimetric

storage capacity of pristine graphene . The interaction H …G was studied by DFT in single- and double-vacancy

graphene by Wu et al., with direct implications for the behavior of defected graphene during hydrogenation studies .

The mechanism of H  interaction with Al-doped porous graphene has been reported by Ao et al., showing by DFT that
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Al/G can store up to 10.5 wt.% H , with a relatively low H  adsorption energy of −1.11 to −0.41 eV/H , which would

potentially allow hydrogen absorption/desorption near room temperature conditions, in agreement with the findings from

the analysis of atomic charges, electronic distribution, and density of states (DOS) of the system . The enhanced

interaction was potentially due to the polarization of the adsorbed H  molecules.

Akilan et al. have studied by DFT the adsorption of H  molecules on B/N-doped defected (5-8-5, 55-77, 555-777 and

5555-6-7777 defects) graphene sheets . The N-atom addition (donor behavior, n-type semiconductor) increases the

delocalized electrons, while the B atoms (acceptor, p-type semiconductor) increase the localized electrons in the

considered system. The most efficient adsorption was modelled when the H  molecule approached the sheet in a

perpendicular direction (−80 meV), while the least efficient interaction was observed in a parallel orientation (−9 meV),

while the delocalized electron density was higher on the fusion points of the pentagonal and hexagonal rings and would

therefore enhance H  adsorption . Another supporting DFT study of H  storage on TM-doped defected graphene (TM =

transition metal) revealed that in the case of TM = Sc, the 555-777/Sc structure doped with Sc showed the maximum H

capacity, with H  binding energies in the range 0.2–0.4 eV/H  .

The advances regarding TM-loaded Mg-based alloys/G have been reviewed recently . A few important points are

attributed to graphene: It can inhibit grain growth, thus aiding the overall cyclability of the composite, and it can

(co-)catalyze the hydrogenation process, in which the electron transfer between Mg and C plays a key role .

The cyclic behavior of metal hydrides can be affected by issues related to grain growth. This can be partly overcome with

the formation of G layers encapsulating MgH  to prevent grain growth . In this report, Lototskyy et al. used various

carbon sources (graphite, AC, MWCNTs, etc.) and showed that the formation of graphene sheets during high-energy

reactive ball milling in hydrogen (HRBM) is responsible for the encapsulation of MgH , noting an increase in a/d cycling

behavior along with a more reduced size of the MgH  crystallites (40–125 nm vs. 180 nm in pristine form) . The

catalytic role of graphene nanoplatelets (GNP) over H  storage kinetics in Mg has been studied by Ruse et al. . The

enhancement of more than an order of magnitude was attributed to GNP properties (size, thickness, defect density, and

specific surface area), and these can be further tuned to alter H  storage kinetics in Mg–GNP nanocomposites . A

carbon-neutral, reversible, and sustainable process that produces H  is the formate-bicarbonate system, where graphene

has also served as a support of Pd and Ru metals .

3. Manufacturing Techniques

Several techniques have been utilized to introduce metal catalysts into graphene, synthesizing (nano)composites

containing graphene and carbonaceous materials . While ball milling and its variants remain a key technique, other

options have been explored: Electrostatic layer-by-layer self-assembled G/MWCNTs , Uranium U-decorated G (H  and

D  adsorption) , and plasma-assisted milling in Mg@FLG composites (few-layer graphene nanosheets) . Given the

remarkable properties of 2D graphene on hydride storing materials, the synthesis of 2D MgH  has also been proposed in

DFT studies .
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