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The gastrointestinal tract has the function of digesting food, absorbing the nutrients, and forming a barrier against
harmful agents, but it is also an immune-hormonal system. Functional aspects of this system, such as peristaltic
movements, substance transport, and local blood flow, are regulated by an intrinsic network of neuronal ganglia
known as the enteric nervous system (ENS). The ENS provides motor excitatory neurons, innervate muscle layers,
secretory glands, and the lymphatic vascular system. It is the largest and most complex part of the peripheral
nervous system, being organized into distinct neuron networks within the gut wall, where individual small ganglia
are interconnected by dense fiber bundles. These nerve plexuses are organized into two layers of neuronal ganglia
and enteroglial cells that are interconnected: The myenteric plexus (Auerbach plexus) and the submucosa plexus
(Meissner plexus). The ENS forms a complete sensory-motor reflex composed of intrinsic primary afferent neurons

(IPANS), interneurons, and motor neurons.

enteric nervous system (ENS) microbiota

| 1. The Enteric Nervous System and the Gut-Brain Axis

These plexuses are located between the layers of the gastrointestinal tract and present about 20 subtypes of
neurons, differentiated by the expression of neuropeptides . The ENS also features enteroglial cells (EGCs).
These are relatively small, with a star shape and can be identified immunochemically through the expression of
specific proteins, such as glial fibrillar acid protein (GFAP), vimentin, and S-100 2. These cells can express
receptors for cytokines, neuropeptides, and neurotrophins, exerting functions in both the ENS and the immune
system, and participating in the modulation of motility and secretion functions of the gastrointestinal tract. In
addition, EGCs are necessary for the structural and functional integrity of the ENS, participating in the intestinal

mucosal barrier and contributing to intestinal homeostasis £,

In 2013, the National Institute of Mental Health launched a project focused on exploring the mechanism involved in
gut-brain communication 4; however, the exact mechanisms by which the gut and brain communicate and
influence each other are not yet fully understood. From an anatomical point of view, the critical interactive
communications between the gut and brain are the sympathetic system (SS) and the vagus nervus (VN) of the
autonomic nervous system (ANS), while the site of interactive communication occurs in the spinal cord 4; a
sophisticated and four-leveled control system has been well-described B8l The very first level occurs in the ENS,
where it depends on the myenteric ganglia, sub-mucosae ganglion, and EGCs 8, Proceeding in an ascending
pathway, the second control step occurs in the prevertebral ganglia, which mediates visceral reflex responses 2.
The third hierarchical level is located in the spinal tract between T5 and L2, for the SS, and S2 and S4/S5 for the
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parasympathetic system, through the tractus solitaires nucleus in the brain stem and the dorsal motor nucleus of
VN, whose effect is dominant in the upper gastrointestinal tract, mediated by cholinergic inputs 9. Cortical and
basal ganglia neurons maintain the highest level of control. The afferent fibers of the VN arrive at the nucleus of the
tractus solitaries, whose fibers ascend towards the thalamus. Spinal afferent fibers ascend within the spinothalamic
tract, enter the gracile nucleus and cuneate nucleus, and project to the thalamus through the lemniscus medialis.
These fibers arrive diffusively in the lobus limbicus, which is the insular cortex, through the parabrachialis nucleus
Bl The VN represents the primary neural pathway connecting the gastrointestinal tract to the solitary tract’s
nucleus and from that to the hypothalamus and neocortex 12l The VN does not directly interact with the gut luminal
content (131 despite being indirectly related through metabolites altered by the entero-endocrine cells in the gut
epithelium 131, This system has recently been described, with a complicated relationship between vagal synaptic
afferents and entero-endocrine cells in the gut, which probably directs nutritional information towards the brain,
mediated by the glutamatergic neurotransmission 41, VN fibers are enriched with receptors such as 5-HT3, Toll-

like receptor 4 (TLR4), and free fatty acid receptors (FFARs), and their final projections end in the brain 22!,

In the gastrointestinal tract, a wide variety of neurotransmitters, neuro-regulators, and hormones play different
roles. Acetylcholine (ACh) acts via muscarinic receptors to directly stimulate smooth intestinal muscle contractility
(131 sybstance P (SP), neurokinin A, and neurokinin B are neuromodulators of tachykinin, and the action of SP on
neurotransmission occurs in the non-adrenergic/non-cholinergic system (NANC), which is directly involved in the
perception of painful stimuli. The vasoactive intestinal peptide (VIP) induces vasodilation and modulates mucin
secretion and the proliferation of goblet cells in the intestinal mucosa 8. In addition, it participates in the relaxation
of intestinal smooth muscles and modulates functions of the lymphocyte component of the immune system.
Cholecystocin (CCK) is a major mediator of gastrointestinal feedback to the central nervous system through the
afferent component of the VN. Histamine and serotonin (5-hydroxytryptamine or, simply, 5-HT) modulate the
function of a variety of intestinal cells, including neurons, EGCs, muscle cells, and the immune system.
Somatostatin (SST), which lies behind the regulation of the growth of intestinal cells, inhibits the secretion of

gastrin, insulin, glucagon, and cytokines L7118,

| 2. Commensal Bacteria and the Enteric Nervous System

The human gastrointestinal system is inhabited by a large group of 1000 distinct species of bacteria in a symbiotic
relationship 19, This variegate collection of microbes is called the “microbiota”, whereas their genetic material is
referred to as the “microbiome” 22, The commensal microbiota colonizes the mammalian gut and other body
surfaces shortly after birth and remains there throughout an individual’s lifetime. In healthy adult individuals, the
microbiota is primarily composed of five bacteria phyla: Firmicutes (79.4%); Bacteroidetes (16.9%); Actinobacteria
(2.5%); Proteobacteria (1%); and Verrucomicrobia (0.1%) [29. Although bacteria are the most represented
biological entities, fungi, archaea, and viruses create the “rare biosphere” of the gut microbiome. A healthy and
balanced state marked by a high diversity and abundance of microbial populations in the gut is defined as eubiosis
(291 A wide range of factors, including diets with highly processed foods, a lack of regular sleep, and several

diseases, can alter the microbiota diversity and abundancy (dysbiosis) 22, The dysbiotic state has been linked to
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several pathological conditions, such as cardiovascular disease, obesity, diabetes, inflammatory bowel disease,

and pulmonary hypertension 21211,

It has long been thought that the only control exerted by the gut microbiota occurs through the VN and ENS [251(28],
Surprisingly, it has been demonstrated that, even though VN and ENS are fundamental in the gut—brain axis, the
microbiota plays a critical role in immune, endocrine, and neuroendocrine maturation in nervous system
sprouting 23, It is interesting to note that all of the actors (VN, ENS, and microbiota) are co-primary in their
contribution to brain afferents. For example, the capacity of the bacterium Lactobacillus rhamnosus JB-1 to
modulate anxiety-like behavior and gamma-aminobutyric acid (GABA)-mediated neurotransmission in mice is lost
after vagotomy, and the anxiolytic effect produced by Bifidobacterium longum NCC3001, which is absent in mice
after vagotomy, suggests a fundamental role of the VN and ENS in the modulation of bacteria 2728 On the other

hand, a mild gastrointestinal infection, after vagotomy, generates anxiety, with a presumed direct effect in the brain
29]

The gut microbiota synthesizes different metabolites, i.e., esters, serotonin, tryptophan, and various fatty acids,
which might influence the brain. It has been demonstrated that the indirect effect exerted by the gut microbiota
influences serotoninergic transmission, regulating tryptophan, whose concentration is higher in male germ-free
mice compared to controls with an intestinal microbiota 2%, who also show a higher hippocampal concentration of

serotonin (241,

It has been well-demonstrated that the microbiota produces short-chain fatty acid (SCFA) metabolites, i.e.,
butyrate, propionate, and acetate. They have a direct effect on repairing microglia in germ-free mice [B132],
Furthermore, SCFAs impact at least two systems of molecular signaling that have widespread regulatory effects
throughout the body: Histone deacetylation (HDAC) and G-protein-coupled receptors (GPCRs) 8. SCFAs are
natural inhibitors of HDAC and activators of specific G-protein-coupled receptors (GPCRs). An imbalance in the
direction of excessive HDAC has been found in Parkinson’s disease 24, GPCRs are transmembrane proteins that
represent a significant gateway through which cells convert external cues into intracellular signals (29). SCFAs
activate two specific GPCRs (GPR41 and GPR43) with no other known ligands B3B8 GPR41 is abundant in
human sympathetic ganglia, where its activation by propionic acid increases sympathetic nervous system outflow
and one potential mechanism by which dietary fiber (rich in SCFA) can increase the basal metabolic rate and help
control obesity [B8I7l |t has also been proven that propionate and butyrate administered to rat neuroblasts
increased the expression of tyrosine hydroxylase, which is the rate-limiting enzyme in noradrenaline, and
dopamine synthesis [14I28]. The main findings in terms of the bacterial influence on the ENS are reported in Table 1

and represented graphically in Figure 1.
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Figure 1. The enteric nervous system and the central nervous system constantly communicate with each other and
alterations of the microbiota can be involved in the pathogenesis of several diseases.

Table 1. Bacteria and the enteric nervous system.

Field of Interest Key Findings
Gut Microbiota

Social events allow horizontal transmission of microbes between individuals of the same
species (as observed in Blattodea or baboons).
Rodent models with high-fat diets and reduction of Lactobacillus spp. give birth to offspring
Social behavior with reduced ability to discriminate between familiar and unknown individuals of the same
species.
Dysbiosis promotes drastic changes in social behavior in rodents and supplementation with
Bifidobacteria and Lactobacilli leads to improvement in early life and adulthood.

Gut microbiota can alter sleep cycles through the systemic production of inflammatory
Sleep cycle and cytokines, which have been proven to alter non-REM sleep and alter cortisol and
mood dysorders  norepinephrine production. These phenomena are related to gut permeability and systemic
translocation of gut bacteria.

Alzheimer’s Several bacteria promote neuro-inflammatory response typical of AD.
disease (AD) Increased phosphorylated tau in patients with microbiota metabolites in cerebrospinal fluid.

High microbial density in the olfactory bulbs of patients with PD.
Postural instability and gait symptoms can be associated with abundance of particular
species.

Parkinson’s
disease (PD)
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Field of Interest Key Findings
Gut Microbiota

Pathogenic bacteria

Toxin-induced diarrhea is favored by the promotion of serotonin (5-HT) from the mucosa,
Toxin-producing resulting in activation of the secretomotor reflex pathways through local 5-HT receptors. In
bacteria cases of emesis, 5-HT receptors are located in vagus nerve (VN) sensory terminals that
project up to the emetic center in the brainstem.

%rém“@r!&@@&’%&'&%&%'ﬁ'foﬁ%%'&! the topic of interactions between bacteria (being pathogens or

commensal bacteria), only ke finding[s have been reported. ) ) ] , ) ]
Different studies have remarked on the fundamental role of the gut microbiota in social behavior. This probably

involves the horizontal transmission of microbes between conspecifics 14, for example, in specific Blattodea,
through social events such as coprophagia and proctodeal trophallaxis or in social bees B2, The presence of
Bifidobacterium and Lactobacillus in their gut is fundamental for SCFA production, which becomes essential for
nutrition in starvation periods 494 Different social behavior, such as grooming, in Baboons, is determined by the
convergence of core gut microbial taxa 42, The data seem even more impressive when considered that mice born
from mothers on a high-fat diet present an altered microbiota composition, with a significant reduction of
Lactobacillus spp. and a reduced ability to discriminate between familiar and unknown conspecifics 431, This defect
can be replaced by Lactobacillus reuteri, with a consequent increment of oxytocin, in the paraventricular nucleus of

the hypothalamus 44, improving their social conduct 24!,

Alterations of the gut microbiota, associated with a lack of expression of Toll-like receptors (TLRs), contribute to the
altered response of different pathogens in the gut, i.e., a TLR4-knockout mouse does not show any response to
lipopolysaccharide (LPS) produced by gram-negative bacteria 43146l The Griseofulvin Mouse model, compared
with a specific-pathogen-free mouse model, produced significantly elevated corticosterone and adrenocorticotropic
hormone levels when exposed to stressful conditions. This production could be partially reversed by a fecal
microbial transplant, and was ultimately reversed over time by single Bifidobacterium infantis 7. Moreover, the
experimental conditions reveal that, on that occasion, the timing of the microbiota modeling answer is very limited
in time-span, being fundamental for a precocious maturation of the hypothalamus—pituitary—adrenal axis, with a
gender-specific response 148 More recently, many studies have documented that the microbiota of long-term
stressed mice was significantly different from that of a non-stressed mouse 2. One study also showed that
prolonged stress reduces the quantity of Bacteroides at the cecum and increases the amount of Clostridium 22,
Namely, three kinds of stress-induced bacteria of Enterococcus faecalis, Pseudobutyrivibrio, and aerogenic

bacteria of the Dorea strain have been found 242,

Experimental models of germ-free and antibiotic-treated animals, both of which determine a total absence of
microbiota, show macroscopic alterations of neurotransmitter turnover, an altered neuronal morphology, and
significant neuroinflammation 42, depending on the time of microbiota onset. Likewise, a substitution of the
microbiota results in a drastic modification of behavior and social conduct in experimental animals, such as
rodents. On the contrary, supplementation with Bifidobacterium and Lactobacillus can lead to notable

improvements in social behavior in early life and adulthood 4. As admirably written by Sherwin et al. [14],
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“Emerging research is now conceptualizing animals as “holobionts”: dynamic ecosystems, comprising a host and
its associated microorganisms, that can vary with time, localization, and function. Collectively, the host and
microbial genomes of a holobiont are termed a hologenome, and variations in the hologenome caused by changes

in the host and/or microbes may affect phenotypes may be subject to natural selection”.

2.2. Microbiota, Sleep Cycle, and Mood Disorders

According to Sherwin et al. 14 and many others [#4IBABLL2E34]ES|S6]E7[58]59][60] it seems quite essential that

the microbiota persistently stimulates the immune system, but this remodeling effect has a consequence, even if
very distant B9, A possible interface between the gut microbiota and sleep regulation has been suggested. It has
been widely described that the gut microbiome produces and activates intestinal macrophages, inducing the
production of IL-1p and TNF-a [82: inside the intestinal wall, many LPS induce the synthesis of IL2-1L18 [61](62][63]
The intimate relationship between TNF-o, IL-18, and NREM sleep has been described 283 |t is also well-
accepted that cortisol inhibits the synthesis of these cytokines in the gut-microbiota, and IL-13 and TNF-a display a
peak level in human blood around midnight, when cortisol is at the nadir 483, The parenteral administration of
LPS to humans in nanogram quantities (0.4 ng/kg body weight) increases the plasma concentration of IL-6 and
TNF-a, along with salivary and plasma cortisol and plasma norepinephrine. These changes are accompanied by a
depressed mood, increased anxiety, and impaired long-term memory for emotional stimuli €887, Matsuda et al.
recently developed a depression rat model using the 14-day social defeat stress (SDS) paradigm 8. These
experimental rodents exhibit long-term social avoidance, major depressive disorders, and sleep abnormalities, with
increased REM, but a decreased NREM sleep time and increased defragmentation of sleep continuity. The authors
examined the fecal gut microbiota before, during, and after stress studies. The social defeat stress significantly
increased the fecal classes of Betaproteobacteria and Flavibacteria, while decreasing those of Clostridia.
Bacteroides and Bacilli showed a tendency to increase, whereas Actinobacteria tended to decrease. When
compared to before stress, Lactobacillus showed evident decreases, whereas Blautia exhibited significant
increases. The Lactobacillus reuteri levels significantly increased following stress conditions, with further increases
observed even being observed one month after the stress conditions ended [8l. Conversely, other species

(Ruminococcus flavefaciens, Blautia producta, and Clostridium perfringens) exhibited only temporary change 7
(s8]

It has been demonstrated that an altered gut-microbiome with elevated LPS and peptidoglycan is regularly higher
than that of a teetotaler; in alcoholics, before and during ethanol detoxification, there is an increased mRNA and
plasma level of IL-8, IL-1B3, and IL-18. Employing Cr51-EDTA as a probe of intestinal permeability, a population of
chronic alcoholics was studied, who were divided into two groups: Those with high and those with normal
permeability (65). The high permeability group had higher scores of depression, anxiety, and alcohol craving than
the low permeability group, as well as a distinct pattern of changes in the gut microbial population, characterized by
decreased colonization of bacteria known to have anti-inflammatory effects; Bifidobacterium species; and
Faecalibacterium, in particular, Faecalibacterium prausnitzii BZ[E2, Alcoholics who displayed the persistence of
intestinal hyper-permeability after three weeks of ethanol withdrawal also demonstrated the persistence of

depression, anxiety, and alcohol craving 62!,
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2.3. Microbiota and Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic and irreversible neurodegenerative disease, characterized by a loss of
neurons and progressive impairments in the synaptic function, accompanied by deposition of the amyloid-B (AB)
peptide outside or around neurons, together with an accumulation of hyper-phosphorylated protein tau inside
cortical neurons A2 Amyloid accumulation, involving the deposition of hyperphosphorylated tau
proteins, with consequent microtubule destabilization, leads to two critical processes: An essential increase of
general neuro-inflammation, and significant microglial and astrocytic activation and starvation of the neurons, due
to the interruption of axonal transport. The most important consequences are the altered glutamatergic currents
and the critical calcium inflow currents, with the significant induction of apoptosis Z2Z3IZAIT5I76] - Apnimal models of
amyloid and tau depositions are related to herpes simplex virus type 1 (HSV1) infection in mice that upregulates
the encoding genes for cholesterol 25-hydroxylase (CH25H), which seems to be involved in amyloid altered
catabolism or hyper-production AT Nevertheless, many other bacteria have been related to the essential
neuro-inflammatory status, typical of AD, such as spirochaete, and Chlamydia pneumoniae Bl A positive
relationship with phosphorylated tau and phosphorylated tau/Abeta 42 in cerebrospinal fluid and microbiota
metabolism has been found with an elevation of trimethylamine N-oxide in AD models B2, Moreover, transgenic
wild-type amyloid precursor protein (APP) mice and germ-free mice have a diminished level of amyloid deposition
compared to APP mice with a healthy microbiota B2l and this has also been proved in long-term spectrum
antibiotic treatment, which seems to reduce amyloid depositions B4l It has been described that AD mice have
severe quotes of Verrucomicrobia and Proteobacteria, with a concomitant reduction of Ruminococcus and
Butyricicoccus and short-chain fatty acids [B2l[88] Moreover, poor oral hygiene has been linked to AD, with
parodontopathy and tooth loss being risk factors for dementia in two studies (788 as well as severe periodontitis
related to lower cognitive functions BSQIRLI921[93][941[95]196]  Even if studies have many different biases, it has been
demonstrated that periodontal disease may be related to an increased brain amyloid load through PET studies 22,

and that there is an increase of Fusobacteriaceae and higher abundance of Prevotellaceae in AD patients 2211871,

2.4. Microbiota and Parkinson’s Disease

More studies have been conducted on the second most frequent form of neurodegenerative disease, which is
Parkinson’s Disease (PD). The converging line of these studies shares two common points: The high-density
microbic population of the olfactory bulb and the gut, and the high-density deposition of misfolded alpha-synuclein
deposition at the two sites [L2IB8I991001 |t has been demonstrated that the alpha-synuclein deposits have a
rostrocaudal gradient 1921 with a higher concentration in the submandibular gland and lower concentration in the
esophagus 01102l |t has been suggested that the main vagal efferents could be the sprouting routes from
peripheral sites towards the brainstem 22 and a vagotomy decreased the adjusted risk of developing PD in a 20-
year-followed-up population 193112041 |t has been demonstrated that there is a higher intestinal permeability in PD
patients (103 with a higher presence of Enterobacterales (E. coli) in mucosal staining, associated with a higher
plasmatic LPS binding protein in PD patients 191021 |n wild-type over-expressed alpha-synuclein mice (ASO),
germ-free conditions produce fewer motor symptoms and minimal signs of general brain inflammation and alpha-

synuclein 191 The same aspects occur in antibiotic-treated mice, whereas colonization with wild--type mice or

https://encyclopedia.pub/entry/6362 7/32



Enteric Nervous System | Encyclopedia.pub

healthy subjects feces, or with high quantities of SCFAs, determines a worsening of Parkinsonian motor symptoms
[195] Three cross-sectional studies reported a relative abundance of Prevotellaceae in PD, but not in controls (07],
Combined with the severity of constipation, the abundance of Prevotellaceae, Lactobacillaceae,
Bradyrhyizobiaceae, and Clostridiales IV could be used to identify PD cases with a 66.7% sensitivity and 90.3%
specificity. Postural instability and gait symptoms were associated with the relative abundance of Enterobacterales
(101][107][108] |t has also been reported that there is an increment of LPS synthesis in PD subjects relative to
controls (298] The same aspect has been reinforced in a different study, which showed lower serum levels of LPS-
binding protein 222 as well as a reduction of the absolute concentration of fecal SCFAs (acetate, propionate, and
butyrate) 1191,

2.5. Microbiota and Other Neurodegenerative Disease

Several studies in animal and human models of demyelinating diseases, i.e., experimental autoimmune

encephalomyelitis (EAE), Multiple Sclerosis (MS), and Devic’s Neuromyelithis (NMO), have been performed [111]
[112][113][114][115]

Germ-free mice were highly resistant to developing autoimmune encephalitis 1121131 or had lower clinical scores
due to their encephalitis 113, However, this condition was acutely reversed when these germ-free mice received a
fecal transplant from healthy mice 1131, |t has been thought that environmental conditions which seem to influence
MS progression, such as obesity, smoking, low vitamin D levels, and altered responses to human viruses [23I116]
(LA7JL18][119]  seem to do so through the mediation of microbiota 1201211 | egky gut 122 js highly present in
relapsing-remitting MS, and different studies have shown a different gut microbiota composition in MS, rather than
in control subjects [1221[123][124][125[126][127] 'Any specificity has been remarked on for a given microbiota composition
in MS cases, but a pro-inflammatory milieu is a constant finding 1211221 OQverlap with other inflammatory chronic
conditions, such as Crohn’s disease, small intestinal bacterial overgrowth, rhneumatoid arthritis, and undifferentiated
connective pathologies, has been documented 128111291130 There is a tendency to report some specific groups of
microbes in MS microbiota, i.e., Archaea (genus Methanobrevibacter) 1241 or the depletion of Firmicutes species
(Clostridium genera) 122 and Bacteroidetes phyla 12311261271 Eyen animal models of EAE (primates) might show
low levels of Lipid 654, which is a lipopeptide, presumably derived from gut Bacteroidetes 31, Minimal studies
have been done to determine MS levels and disease-progression, and a definite result could be obtained through
such investigations. Nevertheless, in a pediatric MS population, the depletion of Fusobacteria was associated with
a higher hazard ratio of an earlier relapse 122 and different studies are currently being conducted on this

fascinating topic (32,

The scenario for NMO is different, which is frequently associated with anti-aquaporin4 and the presence of the
Clostridium adenosine triphosphate-binding cassette transporter in the gut microbiota 23311341 even if all recruited
patients with NMO undergo Rituximab therapy [1341135]

| 3. Pathogenic Bacteria and the Enteric Nervous System
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In addition to commensal microbiota, pathogenic bacteria in the lumen also interact with the ENS indirectly though
non-neuronal intermediary cells, such as endocrine (in particular, enterochromaffin cells (ECs)) or immune resident
gut cells. Some enterotoxins evoke intestinal secretion via nervous reflexes, occurring in parallel to toxins and

having a direct secretive effect on intestinal cells.

In addition, a local gut infection can lead to subtle changes in the affective state and emotional responsiveness, as
in the case of Campylobacter jejuni rodent models, which developed anxiety-like behavior in the absence of a
systemic immune response. In particular, Campylobacter jejuni infection was associated with an elevated
expression of the neuronal activation marker c-Fos in neurons located in the vagal sensory ganglia and in the
nucleus of the solitary tract, as well as in brain regions associated with primary viscerosensory pathways and the

central autonomic network 1381,

3.1. Toxins Promoting Secretion

Among toxin-producing bacteria, Vibrio cholerae produces a potent exotoxin which causes hypersecretion in the
small intestine. The cholera toxin (CT) consists of an A (or enzymatic) subunit of 28 kDa, and five B (or binding)
subunits of 11 kDa each, assembled in a pentameric molecule. The implication of ENS in the pathophysiology of
cholera infection was initially proposed in 1980 137l Previous evidence suggested that CT activated persistent
cAMP-dependent release of 5-HT from the mucosa, resulting in activation of the secretomotor reflex pathways (via
the 5-HT3 receptor) in the ENS by the activation of dendrites of submucosal plexus neurons, and eventually
resulting in the release of VIP and its binding to enterocytic receptors, thus activating further cAMP production,
promoting water and electrolyte secretion (20138 However, recent evidence suggests that CT increases the
excitability of neurons of the myenteric, but not submucosal, plexus, and that neurokinin 3-receptors and not 5-HT3
receptors are involved in the neurosecretory reflex 139 The heat labile enterotoxin (HLT) produced by E. coli
shares a structural homology of 88% with the CT and induces a much less severe form of diarrhea 149, Moreover,
HLT inoculation does not stimulate the release of 5-HT from ECs. The HLT mechanism appears to be intricately
related to the ENS, given that the administration of ganglionic blocked had preventive effects on the development
of diarrhea 149, Furthermore, the much smaller E. coli heat-stable enterotoxins (STa) of 2-5 kDa seem to activate
an NO-dependent myenteric plexus secretory reflex mediated by capsaicin-sensitive C fibers [1411142] in addition to
response suppression by VIP antagonists. In this case, VIP and NO appear to have a synergetic effect, since NO
promotes VIP secretion from nerve terminals. In addition, STa can activate neurokinin receptor 2, which can further

promote intestinal secretion 143,

Clostridioides difficile, which is another toxigenic bacterium, is the primary cause of antibiotic-associated diarrhea
and colitis in humans. Toxigenic strains release two exotoxins: Toxin A (TX-A) and (TX-B). These are responsible
for diarrhea and an acute mucosal inflammatory response 144, The introduction of C. difficile toxins into the gut
lumen stimulated the influx of neutrophils and promoted the activation of enteric neurons to increase luminal
secretion and peristalsis 1431, Additionally, responses to TX-A involve the up-regulation of substance P in both
lumbar dorsal root ganglia and small bowel enterocytes (1481, |n addition, in vivo models showed that low doses of

TX-A solicited an excitatory action at the level of the submucosal plexus and were involved in the suppression of
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noradrenaline release from sympathetic postganglionic axons 147, As a result, the stimulation of submucosal
secretomotor neurons evokes secretion from mucosal crypts. The inactivation of sympathetic braking on
secretomotor neurons further facilitates the secretion. Moreover, recent studies showed that EGCs are susceptible

to C. difficile infection, due to the cytotoxic and senescence-promoting effects of TX-B [1481[149],

3.2. Toxins Promoting Emesis

Staphylococcus aureus produces a myriad of enterotoxins (SEs), commonly responsible for food poisoning. It
appears that emesis is caused by 5-HT secretion. In particular, it may be related to 5-HT3 receptors located in VN
sensory terminals that project up to the emetic center in the brainstem 229, However, the process has only been
proven indirectly in animal models of Suncus murinus, given that emesis is prevented by 5-HT inhibitor and 5-HT3
receptor antagonists 151 A similar mechanism has been proposed for cereulide, which is a cyclic
dodecadepsipeptide that is produced by Bacillus cereus. The emetic effects of the toxin seem to be dependent on
5-HT3 receptors on VN afferent neurons since vagotomy and 5-HT3 receptor antagonists inhibit emesis in Suncus
(152 Similar to SEs, it is not known whether cereulide directly interacts with VN sensory endings or promotes 5-HT
release by ECs [152],

| 4. Viral Influence on the Enteric Nervous System

Several gastrointestinal motility disorders (GIMDs) can depend on functional or anatomic alterations of the ENS
(153][154][155] The molecular basis of these alterations is heterogeneous, including degenerative and inflammation-
mediated abnormalities 228, In this context, infectious agents, such as neurotropic viruses, can be identified as
etiological factors affecting the integrity of the ENS, either directly or through immune-mediated mechanisms 1561,

The main findings in terms of the viral influence on the ENS are reported in Table 2 and represented graphically in

Figure 2.
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Figure 2. Pathogenic bacteria, viruses, and parasites primarily affecting the gastrointestinal system interact with

the enteric nervous system, establishing a connection between the gut and the central nervous system.

Table 2. Viruses and the enteric nervous system.

Viral Agent(s) Pathogenetic Mechanism(s) Disease(s)

TBEV Myenteric plexus infection Irreversible ileus
WNV, ZIKV Viral replication within enteric neurons causing cell death Intestinal dysmotility
Influenza A Influenza A virus alterations in the ENS structures, Parkinson's disease
Virus/HSV-1 followed by HSV-1 life-long persistency

Herpesviruses VZV latency in ganglia of the ENS; EBV induction of Ogilvie’s syndrome, CIIPO,
(EBV, VzV) inflammatory infiltrates within the myenteric plexuses myenteric ganglionitis
JCV Infection of the EGCs of the myenteric plexus ClIPO

HIV-1 Tat protein activation of EGCs causing a
HIV neuroinflammatory response and synergistic action with
morphine

Diarrhea and neurotoxic
effects

. Rotavirus infection of the EC cells and stimulation of . .
Rotaviruses . . Rotavirus-related diarrhea
serotonin secretion
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Viral Agent(s) Pathogenetic Mechanism(s) Disease(s)
HAdV-41 Serotonin release from EC cells leading to activation of Diarrhea
EGCs
HSV-1 Destruction of the enteric neurons by the massive Loss of peristalsis and
recruitment of neutrophils toxic megacolon
Activation of EGCs with massive release of IL-6 and other SARS-CoV-2 related-
SARS-CoV-2 . . . .
inflammatory mediators (cytokine storm) diarrhea

Evidence supporting viruses as possible etiological factors involved in GIMDs is still based on sporadic cases or
IhRufakigcrerpEs fBpoRiiyiRAl Ytal REREEs AN JERIN PN QRRBIN yBRES anifiRH AN hHIE HdigRas 9 o JiBH: bERB R
BhsePBlitisnWAL: WBBt-Milg Visusoddiid: AtesMiBISEERYc-obaragsoRinIoBsirus ki &Ry FastSiimRaryiMies
Y6 civpeigaNhzesiaDyiEte: likely: tdobReE YRBIRINaNInMiligh thE GastriFREgial Fellsosal Rt sbusmly BYaming
dieRaicitAsside-rRRNelRM 8. Human Immunodeficiency Virus; EC cells: enterochromaffin cells; HAdV-41:
Adenovirus-41.

Viruses can target different cellular populations of the ENS. The EGCs are the major component of the ENS that
can be targeted by viruses and outnumber enteric neurons by a factor of 4 to 10 161 EGCs act as a mechanical
support for enteric neurons, are responsible for the survival and differentiation of neurons (1621 and are antigen-
presenting cells to innate and adaptive immune cells [163)[164] Then, EGC activation by viruses or their antigens is a
key step for peripheral neuroglial immune priming by viruses, leading to a late onset of neurological impairment
[165] Inflammatory stimuli activate EGCs and convert them into a “reactive glial cell phenotype” which can release
protective factors (neurotrophin-3, GDNF, GNSO, and PEA/PPAR-a) or destructive factors. The massive release of

destructive factors and several proinflammatory mediators, such as IL-13, IL-6, TNF-a, and MCP-1, alters the
gastrointestinal motility [266IL67]1168]

Some cases of intestinal dysmotility disorders seem to be related to viral infection (169707 1y mice models,
inoculation with neurotropic flaviviruses leads to the injury and death of enteric neurons, inflammation, intestinal
dilation, and retarded bowel transit. More precisely, the inoculation of mice with the flaviviruses West Nile virus
(WNV) and Zika virus (ZIKV) leads to viral replication throughout the intestinal tract and the dilation of intestinal
segments. Viral replication has been specifically observed within enteric neurons, causing cell death, but not in glial
cells or mucosal epithelial cells. In addition, animals surviving WNV infection show defects in gastrointestinal
motility from 4 to 7 weeks after infection. Overall, these observations support the hypothesis that some
gastrointestinal dysmotility disorders may be episodic following infection/inflammation or chronic, which can be

periodically exacerbated by additional infections or inflammation (2]

A delayed effect of viral infection can be hypothesized in the initial neuropathogenesis of Parkinson’s Disease,
according to the “viremic hit” hypothesis, which is based on a dual-hit theory. In particular, influenza A virus may “hit
and run”, initiating pathological alterations in the ENS structures, whereas HSV-1 may “hit” and establish life-long
persistency with repetitive reactivations from latency, depending on the level of immunosenescence 223, These
viremic hits might induce the formation of a-synuclein fibrils in the peripheral nervous tissues, leading to the
gradual transneuronal propagation of a-synucleopathy within the brain LZ4I75][L76]
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Additional neurotropic and gastrointestinal tract-infecting viruses should be considered as good candidates for
causing human gastrointestinal dysmotility disorders. In this regard, some cases of chronic intestinal idiopathic
pseudo-obstruction (CIIPO) B have been associated with viral infections in both pediatric L7879 and adult
patients (15811801811 Among the candidate infectious agents, herpes family virus, varicella zoster virus (VZV),
cytomegalovirus (CMV), Epstein—Barr virus (EBV), and JC virus infections have been identified. Basically, it is
believed that viral infections can affect the neuromuscular layer of the gut. In particular, VZV may infect and
establish latency in ganglia of the ENS 156l and it has been associated with acute colonic pseudo-obstruction
(Ogilvie’s syndrome), severe abdominal pain preceding fatal varicella, autonomic dysfunction, and intestinal
pseudobstruction symptoms following glandular fever secondary to EBV infection 272, In comparison, EBV has
been associated with myenteric ganglionitis, characterized by inflammatory infiltrates within the myenteric plexuses

(2791 JC virus has been identified in the enteroglial cells of the myenteric plexus in some patients with CIIPO [282],

EGCs have also been identified as an HIV target. The viral HIV-1 Trans activating factor (HIV-1 Tat) protein is
hypothesized to be responsible for diarrhea and neurotoxic effects. One hypothesized mechanism is that HIV-1
activates glial cells, causing a neuroinflammatory response, which can be propagated to the central nervous
system. Specifically, HIV interferes with the nervous system function by infecting EGCs, which release HIV-1 Tat,
inducing an alteration in enteric neurons’ action potential by increasing Na+ channel expression 163183l |n
addition, Tat can interact synergistically with morphine, being able to activate EGCs and worsen Gl dysfunction in
HIV-infected narcotic users and HIV-infected patients, using opioid drugs to treat diarrhea 18411851 QOther interactive
pathways have been shown between HIV-1 Tat protein and LPS. In mice models expressing Tat, bacterial intestinal
translocation is significantly increased. Consequently, Tat and LPS synergize to induce the release of the pro-
inflammatory cytokines IL-6, IL-1p, and TNF-a. More specifically, HIV-1 Tat is able to interact with the TLR4
receptor to enhance the pro-inflammatory effects of LPS 1861,

EGCs can be activated by ECs infected with viruses. ECs are distributed along the intestinal mucosa to release
mediators from the basolateral surface and to activate afferent neuron endings, mainly within the lamina propria
(187 Among their mediators, ECs release serotonin (188 which activates the ENS and the extrinsic vagal afferents
to the brain, and may also activate EGCs [21l. The involvement of serotonin has been demonstrated to play a key
role in the regulation of intestinal secretion, gut motility, several Gl disorders, nausea, vomiting, and acute
gastroenteritis [18A190]  Rotaviruses can infect EC cells and stimulate serotonin secretion in a dose- and time-
dependent manner, leading to RV-related diarrhea 194, Similarly, Adenovirus-41 (HAdV-41) can stimulate serotonin
from coxsackievirus and adenovirus receptor (CAR)-expressing human EC cells, activating EGCs. These
observations highlight a serotonin-dependent cross talk between HAdV-41, EC cells, and EGCs that may be
relevant for understanding how HAdV-41 causes diarrhea 192,

The activation of EGCs has been hypothesized for SARS-CoV-2 related-diarrhea. Indeed, the activated EGCs
massively release IL-6 and other inflammatory mediators, resulting in the so-called “cytokine storm” observed in
COVID-19 patients. Therefore, in these cases, Gl dysfunction may be considered as a possible marker of
involvement of ENS/EGC, rather than an accessory symptom, highlighting a pathophysiological mechanism
underlying SARS-CoV-2 neuroinvasion [1931[194][195][196]
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Enteric neurons can be targeted by HSV-1. Once infected, the neurons recruit inflammatory macrophages that, by
releasing ROS, induce changes in ENS neuroplasticity and trigger the destruction of the enteric ganglia, causing
gastrointestinal dysmotility 1271198 HSV.-1 infection leads to the destruction of the enteric neurons by the massive
recruitment of neutrophils, resulting in the permanent loss of peristalsis and the development of a toxic megacolon
(17 Therefore, the acute or chronic exposure of enteric neurons to neurotropic viruses, such as HSV-1,

permanently disturbs the interplay between the ENS and immune cells.

The number of viruses physiologically residing in the human intestine is estimated to be up to 10° per gram of
feces 14 mainly comprising bacteriophages (prokaryotic-infecting viruses), and to a lesser extent, plant-,
amoebae-, human-, and other animal-infecting viruses 223, The human virome is mostly acquired postnatally and
is influenced by a combination of dietary, maternal, and environmental sources 299 During its life course, the
virome diversifies and reaches its peak by adulthood 221, Eukaryotic viruses, such as Parvoviridae, Anelloviridae,
Picobirnaviridae, Circoviridae, and Reoviridae, are often part of the enteric virome of healthy humans 129 despite
being opportunistic pathogens. It is not yet understood which viral sensing and signaling pathways are important

for adjusting the immune responses to control the abundance and composition of the human intestinal virome.
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