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The ransomware attacks threaten not only personal files but also critical infrastructure like smart grids, necessitating early

detection before encryption occurs. Current methods, reliant on pre-encryption data, suffer from insufficient and rapidly

outdated attack patterns, despite efforts to focus on select features. Such an approach assumes that the same features

remain unchanged. This approach proves ineffective due to the polymorphic and metamorphic characteristics of

ransomware, which generate unique attack patterns for each new target, particularly in the pre-encryption phase where

evasiveness is prioritized. 
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1. Introduction

Like other cyberattacks, ransomware attacks target a variety of systems and networks, including Personal Computers

(PCs), mobile devices, Wireless Sensor Networks (WSN), Vehicular Ad Hoc Networks (VANETs), and the Internet of

Things (IoT) . Several studies have been conducted to detect ransomware attacks . To detect crypto-

ransomware early, the data collected during the pre-encryption phase of the crypto-ransomware lifecycle, before the

encryption takes place is used . The collected data are then used to train different machine learning algorithms to

classify the programs into benign and ransomware . However, the lack of sufficient data during the early phases of the

attack adversely affects the accuracy of the model due to insufficient attack patterns .

Currently, ransomware attacks have targeted many Cyber Physical Systems (CPS), causing severe disruption of critical

services and infrastructure . In 2021, the US faced two significant CPS ransomware attacks on its critical

infrastructure. The Colonial Pipeline, a major fuel supplier for the East Coast, experienced a cyberattack in May, leading to

fuel shortages and panic buying in various states . Then, in June, JBS, the world’s top meat supplier, was attacked,

prompting plant shutdowns in the US and Australia. This attack utilized the Ryuk ransomware, demanding millions in

ransom. Colonial Pipeline and JBS suffered significant financial losses, paying ransoms of $4.4 million and $11 million,

respectively . In October 2021, the Czech Republic’s major power company, CEZ, was attacked with RansomExx

ransomware after an intrusion via Winnti malware, causing power outages. Earlier, in December 2020, a natural gas

facility was targeted using the TrickBot malware variant, prompting a response from the Cybersecurity and Infrastructure

Security Agency (CISA) . These attacks underline the severe consequences of ransomware on critical infrastructure,

emphasizing the need for enhanced cybersecurity, and regular system updates, underscoring the significance of

addressing vulnerabilities in CPS.

The insufficient attack patterns are the main obstacle that degrades the early detection accuracy of ransomware attacks.

Although several studies tried to overcome data insufficiency by focusing on how to select a subset of features that

represent the immature ransomware attack patterns. Such approach assumes that the significance of those features

remains unchanged. This does not hold as the polymorphic and metamorphic nature of the attack makes the ransomware

generate different patterns every time it receives a new target. This is especially true during the pre-encryption stage

where the goal of ransomware is to be evasive. Hence, the features become quickly obsolete. GAN has the potential to

overcome the data insufficiency problem by augmenting the real attack patterns with artificial, yet realistic data. However,

the Minimax loss function used by GANS’s generator and discriminator is unable to estimate the distance between the

probability distribution of real and artificial instances in the pre-encryption data of ransomware attacks.
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The major obstacle in the early detection of ransomware involves obtaining adequate data in the pre-encryption stage

when the attack is still being set up and has not yet been executed . Addressing this data shortage is crucial, as a

sufficient dataset is needed for precise early detection. Data augmentation is often used in machine learning solutions and

presents a promising way to tackle this scarcity of data, a problem commonly faced by malware and ransomware early

detection systems. To our understanding, no existing studies specifically address data augmentation in the pre-encryption

stage of ransomware attacks . Another challenge stems from the ever-changing nature of ransomware, which

complicates the relevancy of features used for detection models . For example, an attack pattern seen in one

ransomware variant at a specific time might be more relevant than the same pattern displayed by a different variant at

another time. This indicates that the importance of features can vary depending on the ransomware variant and the timing

of the attack. Despite this, current early detection methods often operate on the assumption that the importance of these

features remains constant, leading to “behavioral drift.” This drift mostly results in detection systems becoming quickly

outdated and less accurate over time.

The Generative Adversarial Network (GAN) has been widely used as an important component of deep neural networks

. The GAN model has gained massive attention from researchers recently due to its prominent characteristics. It has

two main rewards for machine learning based models: the generality and adversarial . It can generate new samples

that can be used to prevent overfitting and, thus, improve machine learning performance. Moreover, it can be used to

generate adversarial samples that can be used to improve the discriminability of the model. GAN use alternative training

to estimate the density function over a data distribution using the Minimax algorithm . The Minimax game algorithm

tries to minimize the maximum possible loss which results in multiple possibilities that can be used to generate new

samples. In doing so, GAN projects the available simple distribution to a much more complex high-dimensional, real-world

data distribution . GAN trains two adversarial networks called the generator and the discriminator. The generator is

trained to map noise samples to synthetic samples with the goal is to generate new adversarial samples that can mislead

the discriminator. Meanwhile, the discriminator trains to distinguish the real data samples from synthesized samples that

were generated using the generator. GAN creates the new samples by making small changes to the original samples so

as to deceive the detection model gain benefit of the nonlinear characteristics of neural networks and thus constructs a

model that produces incorrect classification results.

Due to its prominent features, many researchers have applied the GAN algorithm to improve the classification

performance of machine learning algorithms. Moti and Hashemi  proposed a malware detection model for Internet of

Things (IoT) using the Generative Adversarial Network technique and Convolutional Neural Network (CNN). CNN was

used to extract high-level features while GAN was used to generate new malware samples to mitigate the limitations of

availability of insufficient malware samples in IoT. Li and Zhou  utilized GAN to develop a malware detection model-

based adversarial example for the Android platform. Their proposed model called bi-objective GAN can generate evasive

adversarial-example attacks able to fool the firewall and evade detection. Lu and Li  used GAN to improve the

classification accuracy of the malware detection by generating new samples that can mimic realistic-like malware samples

as well as the realistic distribution of data. Zhang and Zhou , proposed an improved Monte Carlo tree search (MCTS)

algorithm for generating adversarial examples of cross-site scripting (XSS) attacks. A reward value is generated by the

MCTS to rank the generated adversarial examples. The GAN algorithm was used to improve the detectability of

adversarial examples. A GAN-based network was proposed to improve classification performance.

The following paragraph explains how GAN works. GAN formulates the adversarial problem as follows. Let 𝑋 denote the

sample space, x is a benign sample, and 𝑔(𝑥)>0 denotes the classification function when the result is benign. The attacker

aims to generate a malware sample 𝑥* that make 𝑔(𝑥 )>0. Thus, the aim of the attacker can be formulated as follows:

(1)

The GAN reduces the loss function value 𝑉 during the training of both generator  and discriminator  by solving the

following optimization function:

(2)

where
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The 𝑍 denotes the samples from noise distribution. Although the existing GAN has been effectively used to improve the

performance of malware detection models, it does not fully fit for ransomware early detection due to data insufficiency that

makes it difficult to perceive a clear probability distribution of the data. The unclear probability distribution prevents the

GAN’s generator from creating artificial samples as the discriminator will discard them due to the large distance between

the probability distribution of artificial data and real data. GAN According to Dumoulin and Belghazi  and Uehara and

Sato , existing GAN algorithms suffer from a vanishing gradient problem which leads to instability and model collapse

due to the use of predefined adversarial loss function. Haloui and Gupta  used the derived approximation to the

Wasserstein distance to improve the original GAN gradient-based loss function. The improved GAN algorithm is called

WGAN. WGAN relies on the Arjovsky k-Lipschitz continuous function which adversely reduce the capacity of the

discriminator model . Gulrajani and Ahmed  anticipated an enhanced WGAN algorithm that penalizes the norm of

discriminator gradients to train the discriminator network with respect to the sample data. There are several structure GAN

algorithms including fully connected GANs , Conditional GANs , Convolutional GANs , GANs with inference

models , and adversarial autoencoders . Most of these algorithms use the standard loss function which suffers from

the vanishing gradient problem and, thus, leads to instability and model collabs especially when insufficient data is used

for training the classification task. Such limitations hinder the applications of the GAN algorithm to many challenging

domains in cybersecurity such as early detection of ransomware attacks.

References

1. Dumoulin, V.; Belghazi, I.; Poole, B.; Mastropietro, O.; Lamb, A.; Arjovsky, M.; Courville, A. Adversarially learned
inference. arXiv 2016, arXiv:1606.00704.

2. Uehara, M.; Sato, I.; Suzuki, M.; Nakayama, K.; Matsuo, Y. Generative adversarial nets from a density ratio estimation
perspective. arXiv 2016, arXiv:1610.02920.

3. Haloui, I.; Gupta, J.S.; Feuillard, V. Anomaly detection with Wasserstein GAN. arXiv 2018, arXiv:1812.02463.

4. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative
adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal,
QC, Canada, 8–13 December 2014.

5. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9
December 2017.

6. Barua, S.; Erfani, S.M.; Bailey, J. FCC-GAN: A fully connected and convolutional net architecture for GANs. arXiv 2019,
arXiv:1905.02417.

7. Li, M.; Lin, J.; Meng, C.; Ermon, S.; Han, S.; Zhu, J.Y. Efficient spatially sparse inference for conditional gans and
diffusion models. Adv. Neural Inf. Process. Syst. 2022, 35, 28858–28873.

8. Torfi, A.; Fox, E.A.; Reddy, C.K. Differentially private synthetic medical data generation using convolutional GANs. Inf.
Sci. 2022, 586, 485–500.

9. Hoang, T.-N.; Kim, D. Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial
autoencoders. Veh. Commun. 2022, 38, 100520.

10. Gazzan, M.; Sheldon, F.T. Opportunities for Early Detection and Prediction of Ransomware Attacks against Industrial
Control Systems. Future Internet 2023, 15, 144.

11. Gazzan, M.; Alqahtani, A.; Sheldon, F.T. Key Factors Influencing the Rise of Current Ransomware Attacks on Industrial
Control Systems. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021.

12. Alqahtani, A.; Sheldon, F.T. A survey of crypto ransomware attack detection methodologies: An evolving outlook.
Sensors 2022, 22, 1837.

13. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-rimy, B.A.S. Toward an ensemble behavioral-based early evasive malware
detection framework. In Proceedings of the 2021 International Conference on Data Science and Its Applications
(ICoDSA), Virtual, 10–11 April 2021.

14. Moti, Z.; Hashemi, S.; Karimipour, H.; Dehghantanha, A.; Jahromi, A.N.; Abdi, L.; Alavi, F. Generative adversarial
network to detect unseen internet of things malware. Ad. Hoc. Netw. 2021, 122, 102591.

V (G ,D) = Ex[log (D(x))] + Ez[log (1 − D(G(z)))].

[20]

[21]

[22]

[23] [5]

[6] [24] [25]

[24] [26]



15. Yinka-Banjo, C.; Ugot, O.-A. A review of generative adversarial networks and its application in cybersecurity. Artif. Intell.
Rev. 2020, 53, 1721–1736.

16. Zhang, X.; Zhou, Y.; Pei, S.; Zhuge, J.; Chen, J. Adversarial examples detection for XSS attacks based on generative
adversarial networks. IEEE Access 2020, 8, 10989–10996.

17. Wang, C.; Xu, C.; Yao, X.; Tao, D. Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 2019, 23,
921–934.

18. Li, H.; Zhou, S.; Yuan, W.; Li, J.; Leung, H. Adversarial-example attacks toward android malware detection system.
IEEE Syst. J. 2019, 14, 653–656.

19. Lu, Y.; Li, J. Generative adversarial network for improving deep learning based malware classification. In Proceedings
of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019.

20. Dumoulin, V.; Belghazi, I.; Poole, B.; Mastropietro, O.; Lamb, A.; Arjovsky, M.; Courville, A. Adversarially learned
inference. arXiv 2016, arXiv:1606.00704.

21. Uehara, M.; Sato, I.; Suzuki, M.; Nakayama, K.; Matsuo, Y. Generative adversarial nets from a density ratio estimation
perspective. arXiv 2016, arXiv:1610.02920.

22. Haloui, I.; Gupta, J.S.; Feuillard, V. Anomaly detection with Wasserstein GAN. arXiv 2018, arXiv:1812.02463

23. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative
adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal,
QC, Canada, 8–13 December 2014.

24. Li, M.; Lin, J.; Meng, C.; Ermon, S.; Han, S.; Zhu, J.Y. Efficient spatially sparse inference for conditional gans and
diffusion models. Adv. Neural Inf. Process. Syst. 2022, 35, 28858–28873.

25. Torfi, A.; Fox, E.A.; Reddy, C.K. Differentially private synthetic medical data generation using convolutional GANs. Inf.
Sci. 2022, 586, 485–500.

26. Hoang, T.-N.; Kim, D. Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial
autoencoders. Veh. Commun. 2022, 38, 100520.

Retrieved from https://encyclopedia.pub/entry/history/show/115117


