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The features of the nanofibers (NFs) that are used to coat biomedical Ti-based implants are predominantly

dependent on the type of polymer employed. Applicable polymers are categorized as either natural or synthetic

based on their source and composition. Natural polymers, namely cellulose, collagen, gelatin, chitosan, chitin,

dextrose and silk fibroin, have been electrospun into NF scaffolds.

nanofibers  polymers  titanium implants

1. Introduction

The features of the NFs that are used to coat biomedical Ti-based implants are predominantly dependent on the

type of polymer employed . Applicable polymers are categorized as either natural or synthetic based on their

source and composition . Natural polymers, namely cellulose, collagen, gelatin, chitosan, chitin, dextrose and

silk fibroin, have been electrospun into NF scaffolds . Kadavil et al.  report on gelatin providing cellular

attachment and adhesion of human stem cells, which is typical of most natural polymers. However, natural

polymers are limited in their clinical application due to being immunogenic, exhibiting batch-to-batch differences,

limited availability, expensive production and vulnerability to cross-contamination . Moreover, natural polymers

lack mechanical strength and have a relatively rapid degradation rate due to their hydrophilic nature, limiting their

use in long-term clinical processes. These limitations of natural polymers may be remedied through the use of

synthetic polymers .

Synthetic polymers have numerous advantages in comparison to their natural counterparts, namely cost-

effectiveness and durability, and the majority of them have stable mechanical properties for applications in load-

bearing tissue engineering scaffolds . Owed to their ease of processing and biocompatibility, the most popular

synthetic polymers include poly(ε-caprolactone) (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA),

poly(glycolic acid) (PGA), poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) . These polymers have

been approved by the United States Food and Drug Administration (FDA) for use in human medical devices, which

emphasizes their in vivo applicability and that their toxicity factor has been evaluated .

In addition to biocompatibility, biodegradability and lack of toxicity are common properties among synthetic

polymers relevant for coating surfaces of biometals . Biodegradation may be defined by hydrolysis in

physiological conditions (as in the human body) . Boia et al.  greatly emphasized the slow degradation of

PCL-based implants, which is supported by Perumal et al. , who reported that PCL has been said to gradually
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degrade when compared to PLGA and PLA. The degradation rate is dependent on the hydrophilicity of the

monomeric units, and basically, the comparative degradation rates of the polymers may be summarized in terms of

length of the degradation period as : PCL > PLA > PLGA > PGA > hydrophilic polymers (such as PEO and

PVA). Table 1 lists the distinguishing properties of synthetic polymers used in the biomedical field.

Table 1. Overview of the characteristics of synthetic polymers.
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Polymer Properties Applications
Degradation

Rate
Ref.

Poly(ε-

caprolactone)

(PCL)

Hydrophobic aliphatic polyester; slow

degradation rate; bioactive; flexible

mechanical properties; effectively

entraps bactericidal material; semi-

crystalline; semi-permeable

Long-term implants; bone

graft material; tissue

engineering scaffolds; drug-

delivery systems

2–4

years

Poly(lactic acid)

(PLA)

Hydrophobic aliphatic polyester; slow

degradation rate; bioactive; tunable

mechanical properties; crystalline;

porous; stereoisomers: poly(L-lactide)

(PLLA), poly(D-lactide) (PDLA), and

poly(DL-lactide) (PDLLA)

Biomedical coating; load-

bearing applications;

orthopedic fixation devices;

tissue engineering; three-

dimensional (3D) printed

scaffolds; drug-delivery

systems

>24

months

Poly(lactic-co-

glycolic acid)

(PLGA)

Hydrophobic/hydrophilic balance;

intermediate/adjustable degradation

rate; PLA/PGA copolymer; crystalline;

semi-permeable; low osteoinductivity

Copolymer for development

of bone substitute

constructs; bone

regeneration; orthopedic

implants; tissue engineering

6–12

months

Poly(glycolic

acid) (PGA)

Hydrophilic aliphatic polyester; fast

degradation rate; tunable material

properties; crystalline; low solubility;

semi-permeable

Implants, tissue engineering;

drug delivery; biological

adhesives; open soft tissue

wounds

2–4

weeks

Poly(ethylene

oxide) (PEO)

Hydrophilic; synthetic hydrogel Composite functional

materials; hydrogel coatings;

-
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2. Hybridization of Polymers

Despite the various clinical advantages of synthetic polymers, their disadvantages—for instance, lack of cell-

specific recognition sites due to their smooth and hydrophobic surfaces—reduce their applications in implantable

devices . In addition, water-soluble synthetic polymers, such as PVA, exhibit poor mechanical properties .

Studies indicate that one of the most effective strategies applied to subdue the limitations of polymer groups is the

production of novel composite fibers through the combination of various polymers . The results of

Jahanmard et al.  indicated that the biological properties of bi-layered PCL/PLGA composite NFs far exceeded

those of the single layers. Synthetic polymers are often fused with natural polymers to form fibers with optimized

mechanical properties, degradation rates and bioactivity while maintaining the similarity to the ECM and promoting

cell attachment . Examples of single and hybrid electrospun NFs are illustrated by the scanning electron

microscope (SEM) images in Figure 1.

Polymer Properties Applications
Degradation

Rate
Ref.

blood contact

Poly(vinyl

alcohol) (PVA)

Hydrophilic; fast degradation; gel-

forming properties; good film-forming;

good chemical resistance; semi-

crystalline

Implants; tissue engineering -
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Figure 1. Scanning electron microscope (SEM) micrograph illustrations of nanofibers (NFs) composed of (a) pure

synthetic polymers (i) PCL , (ii) PLLA  and (iii) PLGA ; and (b) synthetic and natural polymer composites of

(i) PCL/Collagen , (ii) PLLA/Chitosan  and (iii) PEO/Chitosan .

3. Electrospinning Technique

Electrospinning is a common nanotechnique used to fabricate scaffolds of aligned polymeric NFs with diameters

varying between 3 nm and greater than 5 µm . The engineered 3D porous scaffolds serve as a pattern to

provide mechanical and biochemical support to the surrounding cells relative to the tissue type . A simple

electrospinning setup (Figure 2) consists of a high voltage power supply (typically between 5 to 30 kV), a piece of

feeding equipment (usually a syringe), a spinneret and a collector . The collector for electrospun fibers is

usually on a grounded plate and is usually a metallic material; hence, coating a Ti implant using the electrospinning

method is relatively straightforward . Important factors that govern the quality NFs produced using the

electrospinning process include solution parameters (such as polymer structure and viscosity), processing

parameters (such as flow, voltage and distance) and ambient conditions . By altering these parameters,

multiple experimental arrangements of the process, including coaxial, solution and melt electrospinning, are

achievable . Deviations from the basic electrospinning process are necessary to modify the primary

properties of NFs and realize a tunable coating towards desired structural and functional properties . The

flexibility of the electrospinning technique is convenient for application in Ti implants intended for the complex

human body environment. Several researchers have successfully applied electrospinning to coat Ti  and

Ti–6Al–4V  samples intended for use as human implants. Kadavil et al.  notes also that polymers such

as PCL and PVA have gained popularity as readily electrospinnable polymers and have been used as a template

for the preparation of non-electrospinnable polymers. A specific amount of PEO was used as a fiber-forming

additive by Nitti et al.  to improve the electrospinnability of chitosan. Therefore, technique modifications allow for

the accommodation of the various biopolymer solutions.
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Figure 2. Schematic representation of a basic electrospinning horizontal set-up.
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