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Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia

in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL

particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified,

which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have

yielded heterogeneous results, ranging from a defect to an improvement. HDLs are less able to inhibit the nuclear

factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium

and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is

diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the

HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome,

contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and

endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation

high-density lipoprotein  type 2 diabetes  obesity  metabolic syndrome

1. HDL Size and Composition

High-density lipoproteins (HDLs) are composed of apolipoproteins (mainly apoA-I), non-structural proteins, and

lipids. They are a heterogeneous group of particles that vary in size as well as protein and lipid composition.

Basically, HDLs are composed of a surface monolayer, made up of amphipathic phospholipids (PLs) and

sphingolipids (SPLs) and unesterified cholesterol (UC) molecules, which surround the particle core, which consists

of a mixture of hydrophobic TG and cholesteryl ester (CE) molecules. The alterations in HDL size and composition

in contexts of insulin resistance are important because there is a close relationship between HDL size and

composition and their functions. An overview of the changes in HDL size and composition is presented in Figure 1.
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Figure 1. Main changes in the size and composition of HDLs in T2DM and MetS. ↗ and ↘ mean increase and

decrease, respectively. AGEs, advanced glycation end-products; CE, cholesteryl esters; CETP, cholesteryl ester

transfer protein; MDA, malondialdehyde; PCs, phosphatidylcholines; PEs, phosphatidylethanolamines; PON,

paraoxonase; SAA, serum amyloid A; TG, triglycerides.

1.1. Particle Size

Size-based HDL nomenclature can be confusing because it depends on the technology used to separate HDL

subclasses. In any case, HDLs are classified as very small, small, medium, large and very large particles.

Classically, those particles are called HDL2a and HDL2b (large), HDL3a, HDL3b, and HDL3c (medium or small)

and unlipidated apoA-I or pre-β (discoidal).

Overall, the size of HDLs is decreased in T2DM . More precisely, nuclear magnetic resonance spectroscopy

studies revealed that small HDL particles are more numerous in T2DM, contrary to large HDL particles . It is

also the case in insulin-resistant individuals without diabetes , and the intensity of changes actually increases

with the degree of insulin resistance .

1.2. Lipidome

HDL particles are enriched in TGs in patients with T2DM , obesity , insulin resistance  or MetS

. The replacement of CE by TG molecules in HDLs affects the conformation of apoA-I , which could modulate
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binding to receptors and the functions of HDLs.

PLs and SPLs represent more than one third of the total mass of HDLs. They play a major role in HDL functions,

either by binding to a specific receptor, such as sphingosine-1-phosphate (S1P) receptors or by modulating the

physicochemical properties of HDLs. Lipidomic studies have revealed several changes in the HDL

phosphosphingolipidome, although the results are quite heterogeneous. The expression of results in relation to

either total HDL mass, total HDL lipids, or apoA-I levels makes it challenging to compare between studies. The

HDL content in total PLs has been found to be either decreased in T2DM when the results are expressed in

relation to total lipids , or normal when the results are expressed in relation to total mass or total lipids .

Taken together, phosphatidylcholines (PCs, the main PL class) and sphingomyelins (SMs) represent more than

80% of PLs/SPLs in HDLs. When the results are expressed in relation to apoA-I, the HDL content in PCs and SMs

in T2DM has been found to be either normal or decreased . When the results are expressed in relation to total

HDL lipids, PCs and SMs have been found decreased in T2DM HDLs .

1.3. Proteome

Proteins form a major structural and functional component of HDL particles. The protein cargo of HDLs is

comprised of over 100 proteins . It should be noted that the HDL isolation method has a significant impact on

HDL protein composition . The HDL proteome has been extensively studied in diabetes, especially using mass

spectrometry. Besides apoA-I, the kinetics of several HDL-proteins is perturbed in T2DM, as described hereafter.

Reduced half-lives are observed for apoA-II, apoJ, apoA-IV, transthyretin, vitamin-D binding protein, and

complement C3 . A recent large proteomic study evaluated 182 proteins in isolated HDL fraction and found that

HDLs from T2DM patients are enriched in 17 proteins and are deprived of 44 proteins compared to healthy

individuals . More precisely, HDLs were particularly enriched in pulmonary surfactant protein B and in serum

amyloid A proteins (SAA1 and SAA2). In contrast, T2DM HDLs were deprived in apoA-IV, clusterin, paraoxonases

(PON1 and PON3), apoD, apoE, apoF, apoM, apoC-II, and apoC-III . The enrichment of HDLs in SAA in diabetes

 is of particular interest due to its deleterious role in reverse cholesterol transport (RCT) .

1.4. Glycation and Oxidation

Chronic hyperglycemia in diabetes facilitates accelerated glycation, which is usually divided into early and late

glycation. Thus, reducing sugar reacts with amino groups of proteins to form Schiff bases and then Amadori

compounds (early glycation products). It may be followed by irreversible dehydration, condensation, and cross-

linking reactions, resulting in a heterogeneous family of derivatives called advanced glycation end-products

(AGEs), also known as late glycation products or glycoxidation products. Besides glucose itself, chronic

hyperglycemia and oxidative stress in diabetes induces the production of dicarbonyls (glyoxal, methylglyoxal, 3-

deoxyglucosone), which also react with proteins to yield AGEs . Carboxymethyl-lysine (CML) is thought to be

the most abundant AGE in vivo. Among the amino acids with nucleophilic residues prone to glycation, lysine

residues are particularly abundant in apolipoproteins, and they are the preferred site of glycation.
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The level of HDL glycation is significantly increased in T2DM, and seven glycation sites on lysine residues of apoA-

I have been identified in T2DM subjects . T2DM HDLs are enriched in methylglyoxal .

Beyond its role in the glycoxidation of HDL proteins, oxidative stress also leads to the peroxidation of lipids in

HDLs. The proinflammatory enzyme myeloperoxidase (MPO) represents a major source of reactive-oxygen

species (ROS) in atherosclerotic lesions. MPO-derived oxidants modify lipids and lead to the formation of

dicarbonyls, such as malondialdehyde (MDA). The increased oxidative stress in subjects with T2DM and/or obesity

is a consequence of several abnormalities, including hyperglycemia, insulin resistance, inflammation, and

dyslipidemia . Thus, not surprisingly, T2DM patients have increased concentrations of oxidized HDLs  and

apoA-I , and their HDLs are enriched in MDA  and oxidized fatty acids derived from arachidonic and linoleic

acids .

1.5. Carbamylation

Carbamylation (carbamoylation stricto sensu) is another post-translational modification affecting lipoproteins in

diabetes. It is an irreversible non-enzymatic process mediated by isocyanate, and it is characterized by the binding

of a carbamoyl moiety (-CONH ) to lysine, resulting in carbamyl-lysine. It originates from MPO within

atherosclerotic lesions or from urea or smoking. Plasma MPO levels are increased in T2DM , and patients

with T2DM exhibit higher levels of carbamylated HDLs even without renal impairment .

2. HDL/apoA-I Kinetics

Numerous in vivo kinetic studies demonstrate that low HDL-C levels in T2DM and obesity are due to an

accelerated catabolism of HDL particles . The fractional catabolic rate (FCR) of HDL-apoA-I is

increased, resulting in shorter plasma residence times for HDL particles . Obese patients at an early stage

of insulin resistance (i.e., without impaired glucose tolerance) already have an accelerated HDL-apoA-I catabolism

.

Studies have found the production rate (PR) of HDL-apoA-I to be either elevated  or normal  in

insulin-resistant individuals. The PR of HDL-cholesterol has recently been reported to be higher in patients with

T2DM. In any case, the increase in HDL-apoA-I PR is usually smaller than the increase in the FCR, which explains

the decreased concentrations of HDL-apoA-I. Interestingly, chronic endogenous hyperinsulinemia without insulin

resistance (patients with insulinoma) does not induce an increase in the HDL-apoA-I PR . This suggests that

hyperinsulinemia per se is not responsible for the increased PR of HDL-apoA-I that is sometimes reported in

patients with insulin resistance.

Glycation and glycoxidation may play a role in the accelerated catabolism of HDLs, although there is reportedly no

correlation between HDL-apoA-I FCR and HbA  . Thus, the turnover of glycated apoA-I is almost three times

faster than its non-glycated counterpart . In addition, the methylglyoxal modification of HDLs reduces plasma

half-life in vivo . Yet considerable evidence suggests that the kinetic properties of HDLs are linked to TG
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metabolism. For instance, the HDL-apoA-I FCR in obese individuals is associated with triglyceridemia ,

VLDL-apoB PR , VLDL -TG FCR and PR , and also with the HDL-TG/CE ratio . In T2DM, the HDL-apoA-I

FCR is also positively associated with plasma TG  and with the TG content in HDLs . HDLs enriched in

TGs are hydrolyzed by hepatic lipase, leading to lipid-poor HDLs. Such HDLs are thermodynamically unstable and

exhibit structural modifications in apoA-I, which facilitates both its dissociation from HDL particles  and its renal

glomerular filtration .

3. HDL Functions

3.1. Reverse Cholesterol Transport

The best-known function of HDLs is their major role in RCT, which enables the removal of cholesterol from lipid-

laden macrophages and artery walls. To sum up, HDLs promote cholesterol efflux from macrophage foam cells in

atherosclerotic plaques either specifically by interacting with the transporters ABCA1 and ABCG1, or by aqueous

diffusion, through a process facilitated by the scavenger receptor B1 (SR-B1). ABCA1 mediates cholesterol efflux

preferentially to lipid-poor apoA-I and small dense HDLs, whereas ABCG1 transports cholesterol to the more

mature lipidated HDL particles. Free cholesterol is then esterified by LCAT, and this esterification is important for

maintaining the dynamics of cholesterol efflux. Cholesterol is ultimately cleared by the liver, either directly by

selective uptake through SR-B1 or by a more recently discovered pathway mediated by F1-ATPase and P2Y13

receptor, or indirectly after CETP-mediated transfer to apoB-containing lipoproteins, which are then internalized by

the LDL receptor. In addition to this classical hepatobiliary pathway, cholesterol can be also eliminated by a

transintestinal pathway called transintestinal cholesterol efflux (TICE) .

Cholesterol efflux is thus the first step in the atheroprotective RCT pathway, and the cholesterol efflux capacity

(CEC) of HDL particles is a crucial determinant of cholesterol clearance from lipid-laden macrophages. Over the

past few years, studies have demonstrated that the CEC of HDLs is more strongly and inversely associated with

incident cardiovascular events than the circulating HDL-C level itself .

Some authors reported an increased CEC in patients with T2DM  and in diabetic patients with

hypertriglyceridemia . ABCA1-dependent efflux was also increased using apoB-depleted serum from T2DM

patients with hypertriglyceridemia compared to T2DM patients without hypertriglyceridemia . On the other hand,

CEC in T2DM patients was unmodified using fibroblasts and whole plasma , human THP-1 macrophages,

and apoB-depleted serum , or when using THP-1 cells and HDLs isolated by dextran sulfate precipitation .

Lastly, CEC was decreased in T2DM patients using adipocytes and LpA-I (i.e., HDL particles containing apoA-I but

not apoA-II) , Fu5AH hepatoma cells and whole plasma/serum , mouse peritoneal

macrophages and isolated HDL3 , murine RAW264.7 macrophages and apoB-depleted serum , and also

THP-1 macrophages and isolated HDLs . Similarly, it was recently reported that small HDL particles and apoB-

depleted serum from patients with T2DM both have impaired ABCA1-dependent CEC using baby hamster kidney

(BHK) cells . However, medium and large HDL particles had a similar capacity to promote ABCA1-specific
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CEC in T2DM patients compared to control individuals in the study . Otherwise, all three sizes of HDL particles

from T2DM subjects had similar ABCG1-dependent CEC compared to controls .

Changes in lipid composition may also affect HDL CEC. In particular, the replacement of CE by TG molecules in

HDLs affects the conformation of apoA-I  and could therefore modulate binding to receptors. In addition, the

literature suggests that the content of HDLs in total PLs  and in SMs  modulates CEC, but, as mentioned

above, the changes in these parameters are very heterogeneous across studies. Cardner et al. recently reported

that CEC of apoB-depleted serum is mainly driven by apoA-I level in diabetic individuals .

3.2. Anti-Inflammatory Properties

Both diabetes and obesity are associated with low-grade inflammation, which substantially contributes to

endothelial dysfunction and atherosclerosis. As shown in Figure 2, HDL particles exert an anti-inflammatory

function by downregulating the expression of molecules involved in the recruitment of immune cells into the

subendothelial space. These molecules include chemokine CCL-2 , vascular cell adhesion molecule (VCAM)-1,

intracellular adhesion molecule (ICAM)-1, and selectin-E . In addition, HDLs inhibit the release of inflammatory

cytokines, such as TNF-α and IL-1β. The HDL anti-inflammatory function seems of particular relevance for CV

outcomes, since it predicts new cardiac events in patients with myocardial infarction, independently of HDL-C .

Moreover, an inverse association between the anti-inflammatory capacity of HDLs and incident CV events was

recently observed in a study of individuals from the general population cohort, independently of both HDL-C and

CEC .
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Figure 2. Anti-inflammatory functions of HDLs in T2DM and MetS. ↑ means increase. The inflammatory NF-κB

pathway is triggered by several mediators, including TNF-α, advanced glycation end-products (AGEs), modified

LDLs, reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress. This leads to an increased gene

expression of adhesion molecules, proinflammatory cytokines, and NADPH oxidase (NOX2). Green arrows

represent the functions of healthy HDLs. (1) The binding of HDLs to receptors is modified by conformational

changes in HDL particles in insulin resistant conditions. The depletion in S1P of MetS HDLs likely decreases the

binding to S1P receptors (S1PR). (2) HDL-mediated protection of LDLs against oxidation is affected, (3) in

particular due to the loss of capacity of HDLs to dampen ROS production. This promotes the NF-κB activation

triggered by the recognition of oxidized LDLs by scavenger receptors in vasculature, particularly by LOX-1 (i.e.,

SR-E1) and SR-A1. (4) The activation of endothelial NO synthase by HDLs is reduced (see 4.3) and subsequently

inhibits nitrosylation of NF-κB. (5) Ultimately, HDLs are less able to inhibit the translocation of NF-κB into the

nucleus, and, (6) afterwards, the gene expression of adhesion molecules and proinflammatory cytokines. (7) This

facilitates the recruitment of immune cells into the subendothelial space.

HDLs from T2DM patients are less able to inhibit the migration of monocytes towards endothelial cells .

Interestingly, this loss of function correlates with plasma SAA  and carbamylated HDL levels . The fact that in

vitro carbamylation of HDLs reproduces the loss of capacity to inhibit the migration of monocytes reinforces the

potential role of carbamylated HDLs . Although HbA  or glucose levels do not correlate with this loss of HDL

function , some evidence suggests that glycoxidative changes in HDLs may play a role. Thus, the ex vivo
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treatment of plasma with L-4F, an apoA-I mimetic peptide able to bind oxidized lipids with a higher affinity than

apoA-I itself , restores the anti-inflammatory function of HDLs . 

The activation of the classical IKK/IκB-α/NF-κB pathway plays a crucial role in the expression of adhesion

molecules and in the release of proinflammatory cytokines into cardiovascular tissue. HDLs/apoA-I inhibit the NF-

κB pathway via several overlapped mechanisms following interaction with SR-B1, S1PR, ABCA1, and ABCG1:

cholesterol efflux, endothelial nitric oxide synthase (eNOS) activation  and subsequent S-nitrosylation ,

upregulation of 3β-hydroxysteroid-δ24 reductase  and heme oxygenase-1 , and inhibition of the toll-like

receptors TLR4  and TLR2 . HDLs or apoA-I ultimately prevent NF-κB p65 subunit translocation to the

nucleus and DNA binding , thus inhibiting the transcription of adhesion molecules, CCL-2, proinflammatory

cytokines, and also NADPH-oxidase (NOX2) genes. It has been shown that HDLs isolated from T2DM patients are

unable to suppress the activating phosphorylation of the NF-κB p65 subunit in endothelial cells . Glycated apoA-

I partially loses its ability to inhibit cytosolic IκB-α phosphorylation and NF-κB p65 subunit translocation to the

nucleus .

3.3. Antioxidative Properties

T2DM and obesity are known to be associated with increased oxidative stress, which is closely linked to low-grade

inflammation. In particular, oxidative stress in artery walls is responsible for the formation of oxidized LDLs

(oxLDLs), rendering them more atherogenic. There are several mechanisms through which HDLs present in the

intima can protect LDLs against oxidation . HDLs directly protect LDLs from oxidation induced by one-electron

oxidants (free radicals), and they are also able to remove oxidized lipids from LDLs. These activities can decrease

local concentrations of oxLDLs. The antioxidative potential of HDL particles originates both from the activities of

their proteins and from lipid components. Different HDL-associated apolipoproteins, lipid transfer proteins, and

enzymes have been shown to contribute to the antioxidative capacity of HDLs.

3.4. Nitric Oxide Production

The production of nitric oxide (NO) is important for normal endothelial function and protects against endothelial

dysfunction, an early hallmark of atherosclerosis. HDLs improve the bioavailability of NO in vasculature mainly by

inducing the activating-phosphorylation of eNOS at serine 1177, which then promotes NO synthesis. NO

production contributes to a number HDL’s beneficial effects, such as vasorelaxation, inhibition of NF-κB pathway,

and endothelium repair . Several mechanisms are involved in eNOS activation mediated by HDLs. These

include the binding of HDL-apoA-I to SR-B1  and ABCG1 , the binding of HDL-S1P to S1PR1/3 receptors ,

the activation of mitogen-activated protein (MAP) kinases , the inhibition of protein kinase C (PKC) βII ,

cholesterol efflux facilitating the dissociation of eNOS from caveolin-1 , and, lastly, the suppression of ROS

production which preserves from eNOS uncoupling.

An overview of NO-mediated HDL functions in T2DM and MetS is presented in Figure 3. HDLs from T2DM

patients have been demonstrated to be less able to induce the activating-phosphorylation of eNOS at serine 1177
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, NO production , and vessel relaxation . Interestingly, eNOS phosphorylation and activity are even

affected in obese patients in the absence of diabetes .

Figure 3. NO-mediated HDL functions in T2DM and MetS. ↑ and ↘ mean increase and decrease, respectively.

Green arrows represent the functions of healthy HDLs. (1) HDLs from T2DM and non-diabetic MetS individuals are

less able to induce Akt-dependent eNOS phosphorylation at Ser1177. (2) HDL-mediated protection of LDLs against

oxidation is affected, thus facilitating eNOS inhibition after the binding of modified LDLs to LOX-1. (3) Oxidized

HDLs are also able to bind to LOX-1 receptor, leading to PKCβII activation and subsequently to eNOS inhibition.

(4) The loss of capacity of HDLs to dampen ROS production promotes eNOS uncoupling. (5) Ultimately, HDL-

mediated NO production is reduced, (6) affecting the relaxation of vascular smooth muscle cells and (7)

endothelium repair. (8) Reduced NO synthesis diminishes the inhibition of nitrosylation of NF-κB, as well as NOX2-

mediated ROS production and the recruitment of immune cells into the subendothelial space.

3.5. Antiapoptotic Properties and Endothelium Repair

The integrity of endothelial cells is crucial for vascular homeostasis, and endothelial cell death triggers vascular

damage and promotes inflammation and endothelial dysfunction. HDL particles can inhibit apoptosis in endothelial

cells, thus preserving endothelium integrity .

The antiapoptotic activity of small HDL particles is reduced in MetS individuals , and is closely associated

with altered physicochemical properties, such as core CE depletion and TG enrichment in apoA-I-poor HDL3c .
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The depletion of HDLs in plasmalogens in T2DM and MetS may also play a role, since enrichment of rHDLs with

plasmalogens enhances their antiapoptotic activity . Changes in the HDL-apoM/S1P axis are also likely to be

involved considering its important role in HDL antiapoptotic activity .

4. Antidiabetic Properties

Emerging data suggest that HDL particles could actually contribute to the development of diabetes. Firstly, HDL-C

levels are inversely associated with T2DM development in epidemiological studies , and this metric has

been included in scores for T2DM risk . In addition, Mendelian randomization studies showed that HDL-C

elevation is associated with a lower risk of developing T2DM . Moreover, both HDL particle size and the

concentration of large HDL particles were inversely associated with incident T2DM in the general population .

Moreover, CETP inhibitors, which increased HDL-C concentration of 29 to 132% in large interventional studies,

reduced the risk of new-onset diabetes by 16% on average .

Many of the antidiabetic mechanisms induced by HDLs or apoA-I have now been identified . Infusions of rHDLs

and apoA-I stimulate insulin secretion and reduce plasma glucose concentrations in obese mice and in T2DM

patients . From a mechanistic point of view, apoA-I enhances the expression of key enzymes involved in

insulin maturation in β-cells . In addition, HDLs protect β-cells from apoptosis induced by endoplasmic reticulum

stressors .
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