

Composition and Preparation of Microencapsulated Phase Change Materials

Subjects: **Polymer Science**

Contributor: Danni Yang , Sifan Tu , Jiandong Chen , Haichen Zhang , Wanjuan Chen , Dechao Hu , Jing Lin

Phase change materials (PCMs) have been extensively utilized in latent thermal energy storage (TES) and thermal management systems to bridge the gap between thermal energy supply and demand in time and space, which have received unprecedented attention in the past few years. To effectively address the undesirable inherent defects of pristine PCMs such as leakage, low thermal conductivity, supercooling, and corrosion, enormous efforts have been dedicated to developing various advanced microencapsulated PCMs (MEPCMs).

phase change microcapsules

low-dimensional nanofillers

thermal conductivity

1. Core Materials of MEPCMs

Phase change materials (PCMs) is a kind of typical latent heat thermal energy storage (TES) material with the advantages of large heat storage density, operational simplicity, and high safety, which can control the temperature by reversibly absorbing or releasing thermal energy to the environment ^[1]. Thus, PCMs, as an excellent storage media, have a wide range of applications, including solar energy systems, buildings, and thermal management of vehicles battery and electronic devices ^{[2][3][4][5][6][7][8]}. Generally, PCMs can be divided into solid-solid, solid-liquid, solid-gas, and liquid-gas PCMs according to their phase transition states ^[9]. Although the latent heat of solid-gas and liquid-gas PCMs is larger than that of solid-liquid and solid-solid PCMs, it is difficult to be applied in engineering fields due to their great volume change in phase transition process. Besides, the solid-solid PCMs which stored heat by changing crystal form, have a relatively smaller phase transition enthalpy than solid-liquid PCMs ^[10]. Correspondingly, the solid-liquid PCMs have unique advantages in phase equilibrium, volume change and vapor pressure. Thus, the solid-liquid PCMs become the most significant core materials employing in phase change microcapsules ^[11]. When the external temperature is higher than the solid-liquid PCMs, the solid-liquid PCMs will absorb heat in the form of sensible heat, and the temperature begins to rise. When the phase transformation temperature is reached, the temperature will remain constant. This heating process can effectively store energy in the form of latent heat until it is completely converted into liquid and then raising the temperature in the form of sensible heat (and vice versa). The cooling process also has a period of releasing energy in the form of latent heat.

Solid-liquid PCMs can be further divided into organic, inorganic, and eutectic PCMs according to their composition ^[12]. Among them, organic PCMs have the characteristics of wide applicable temperature range and stable chemical properties, which mainly include paraffins, fatty acids, esters, and alcohols ^[13]. Typically, paraffins, as the most common commercial organic PCMs, contain a variety of high-purity straight chain alkanes, and their melting

temperature and melting enthalpy can increase with the number of carbon atoms increasing. Compared with high-purity straight chain alkanes, paraffins are usually produced as the by-products in crude oil refining. Thus, they are widely available and inexpensive, and have higher practical application value [14][15]. Fatty acid is another organic PCMs produced from common vegetable oils and animal oils, whose cost is higher than that of paraffin. The commonly used fatty acids include stearic acid (SA) (melting point 69 °C), palmitic acid (melting point 56 °C), myristic acid (melting point 58 °C) and lauric acid (melting point 49 °C), etc. Due to their suitable phase transition temperature and high phase transition enthalpy, fatty acids are the most promising non-paraffin PCMs. Besides, sugar alcohol can also be used as PCMs, whose melting temperature and melting enthalpy are the highest among organic PCMs, so it has good application prospects in solar heating and industrial waste heat recovery. Notably, though organic PCMs have various advantages, almost all of them belong to low-temperature PCMs with a melting point lower than 220 °C [16]. Moreover, their thermal conductivity is relatively low, and usually suffer from high flammability and low thermal stability. Different from organic PCMs, the inorganic PCMs exhibit a relatively higher thermal conductivity and greater phase change enthalpy. They also have a clear melting point, excellent flame resistance, and good recyclability. Inorganic PCMs can be roughly divided into hydrated salts and molten salts. When the PCMs are hydrated salts, the solid-liquid phase change process is actually the dehydration and hydration process of hydrated salts, such as $MgSO_4 \cdot 7H_2O$ (melting point 49 °C), $CaCl_2 \cdot 6H_2O$ (melting point 33 °C), $Ba(OH)_2 \cdot 8H_2O$ (melting point 78 °C), $Al(OH)_3 \cdot 7H_2O$ (melting point 75 °C). Usually, two or more hydrated salts are mixed to adjust the phase transition temperature to meet the requirements of practical applications. It is mainly suitable for medium and low temperature TES since the melting point of most hydrated salts is below 220 °C, while molten salts such as sulfate and nitrate can run at a temperature of more than 420 °C and can be used in high temperature TES applications [17][18]. Eutectic PCMs can be prepared by inorganic-inorganic, organic-organic or two kinds of mixed PCMs, which can achieve high thermal conductivity, small supercooling, and a relatively low cost through adjusting their specific proportion. Eutectic PCMs have a wide range of melting points and can be used in low, medium, and high temperature applications. Most organic-inorganic eutectic PCMs belong to low temperature PCMs, such as $CO(NH_2)_2 \cdot NH_4Br$ (melting point 80 °C), while most inorganic-inorganic eutectic PCMs belong to medium temperature PCMs with melting point between 220 °C and 420 °C [19][20]. Their advantages, disadvantages, and the melting points of typical organic, inorganic, and eutectic PCMs are summarized in **Table 1**.

Table 1. Advantages, disadvantages and melting points of typical PCMs.

Type	PCMs	Advantages	Disadvantages	Melting Point (°C)
Organic	Paraffin C16-C18	Wide applicable temperature range	Low thermal conductivity	22
	Paraffin C20-C33	Less supercooling phenomenon	Poor thermal storage capacity per unit volume	50
	Stearic acid	High crystallization rate	Volatile easily Flammability Expensive	69
	Palmitic acid	High chemical stability Strong recycling performance		56
	Myristic acid	Safety and non-toxic		58

Type	PCMs	Advantages	Disadvantages	Melting Point (°C)
Inorganic	Lauric acid	Little corrosion performance		49
	MgSO ₄ ·7H ₂ O	Lower volumetric expansion		49
	CaCl ₂ ·6H ₂ O	Large heat storage capacity Low cost	High supercooling Prone to precipitation	33
	Ba(OH) ₂ ·8H ₂ O	High thermal conductivity	Poor dimensional stability Low thermal stability	78
	Al(OH) ₃ ·7H ₂ O	Greater phase change enthalpy Non-flammable	Corrosive Phase segregation	75
	KNO ₃	With a clear melting point Recyclable	Poor compatibility with some building materials	340
	Na ₂ CO ₃			850
Eutectic	CO(NH ₂) ₂ -NH ₄ Br			80
	Na(CH ₃ COO) ₂ ·3H ₂ O-CO(NH ₂) ₂	High thermal conductivity Hardly segregation	Expensive Strong odor	30
	NaCO ₃ -LiCO ₃	Hardly supercooling		490
	NaF-MgF ₂			640

The shell of phase change microcapsules can effectively prevent the leakage of PCMs during the phase change process. Obviously, to maintain the structural stability of microcapsules, the shell materials need to have high encapsulation efficiency, excellent thermal and chemical stability, and superior compatibility. In the past few decades, extensive efforts have been dedicated to enhance the comprehensive properties of microencapsulated PCMs (MEPCMs) by the reasonable design of shell materials [21]. Usually, these shell materials can be divided into organic, inorganic, and organic-inorganic hybrid materials according to their chemical properties.

2.1. Organic Shells

Organic shell materials are generally composed of natural and synthetic polymer materials which have good elasticity, toughness, excellent compactness, and stable chemical properties. Typically, melamine-formaldehyde (MF) resin and urea-formaldehyde (UF) resin are the most reported and widely used organic shell materials of microcapsules [22][23][24][25][26][27][28][29]. For example, Yu et al. designed a type of MEPCMs by using MF as the shell material and dodecanol as the core material via in-situ polymerization, achieving the highest phase transition enthalpy of 187.5 J/g and a high encapsulation efficiency of 93.1% [28]. Compared with MF, UF has higher phase transition latent heat and relatively poor thermal resistance [30][31][32][33][34][35][36]. Thus, Tohmura et al. developed melamine-urea-formaldehyde resin (MUF) by the simultaneous reaction of cyanuric acid and urea with formaldehyde to effectively improve the intermolecular force, thereby improving its thermal stability [36]. Besides, polymethylmethacrylate (PMMA) is also a common shell material for MEPCMs in recent years due to its environmental stability, and low easy processing cost [37][38][39][40][41]. However, the residual small molecules (such

as formaldehyde, acrylate, etc.) of the above resins pose a threat to the environment and human health. Therefore, more and more studies have been devoted to the development of polyurea or polyurethane (PU) encapsulated MEPCMs [42][43][44]. In particular, the initial reaction rate between diisocyanate and polyol is relatively lower, and the elasticity of MEPCMs shell can be improved by adjusting the soft segment structure of PU, which is very beneficial to the mechanical properties and compactness of MEPCMs [45]. Therefore, in the previous study, one team has realized the microencapsulation of methyl laurate with PU shell through interfacial polymerization [46][47][48]. In addition, some polymers including polystyrene (PS) [49][50][51][52][53] and starch [54], etc are also used as organic shell materials to prepare MEPCMs. However, it is noting that most organic materials face the challenges of high flammability and low thermal conductivity.

2.2. Inorganic Shells

Compared with the organic polymers, the inorganic shell materials have higher thermal conductivity and superior mechanical strength, which can not only improve the durability and reliability of the microcapsules, but also improve the heat transfer performance of MEPCMs. Therefore, the use of inorganic materials as microcapsules shells has become another significant trend [21]. Common inorganic shell materials include silica oxide (SiO_2) [55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71], calcium carbonate (CaCO_3) [72][73][74][75][76], graphene [77][78][79], titanium dioxide (TiO_2) [80][81][82][83], etc. Among them, SiO_2 is a commonly used shell due to its wide source, low cost, and mature preparation method. For example, Liang et al. developed n-octadecane-based MEPCMs with silica shell by interfacial polymerization, and the phase change enthalpy and encapsulation rate of the microcapsules were as high as 109.5 J/g and 51.5%, respectively [56]. Besides, the graphene with superb intrinsic thermal conductivity can significantly improve the thermal conductivity of MEPCMs and provide a new material for thermal energy management [79]. In addition, metal oxides have also been widely used as an inorganic shell, including TiO_2 , Al_2O_3 , Fe_3O_4 , and ZnO , etc [84]. For example, Liu et al. synthesized n-eicosane MEPCMs with TiO_2 as shell by interfacial polymerization, and found that the obtained microcapsules not only had durability and highly stable shape, but also exhibited superior antibacterial function, showing great potential in medical applications [82]. However, it is undeniable that the inorganic shell materials inevitably suffer from the disadvantage of poor stability and brittleness.

2.3. Organic-Inorganic Hybrid Shells

Organic-inorganic hybrid shells can combine the high inherent thermal conductivity of inorganic materials and the toughness of polymer shells, and achieve a high thermal conductivity, permeability resistance and thermal stability of MEPCMs. Therefore, the organic-inorganic hybrid shell exhibit promising potential in next-generation shell materials of MEPCMs [21][85]. It can be expected that the incorporation of inorganic nanofillers in organic shells can endow MEPCMs with high thermal conductivity and some unique properties [86][87][88][89][90][91]. Typically, Pickering emulsion polymerization is a classical method to obtained the polymer/inorganic hybrid shells. For example, Yin et al. prepared n-hexadecanol MEPCMs using MF- SiO_2 as the hybrid shell by Pickering emulsion polymerization [86]. The SiO_2 particles in the shell significantly improved the mechanical strength and thermal reliability of the MEPCMs, and received a high phase change enthalpy of 163.76 J/g. Furthermore, Zhang et al. synthesized a

unique graphene oxide (GO)/polyaniline (PANI) hybrid shell through emulsion polymerization, which combined the excellent barrier properties of GO with the anti-corrosion function of PANI. The results show that the MEPCMs have strong solvent resistance to organic solvents, and the MEPCMs are dispersed in waterborne epoxy resin, which can prepare intelligent coatings with dual functions of anti-corrosion and self-healing [92]. In short, the MEPCMs with polymer-inorganic hybrid shells have become the current research focus of phase change microcapsules, which hold great potential in thermal management applications. **Table 2** summarizes the phase change enthalpy and encapsulation rate of MEPCMs encapsulated by some representative shell materials.

Table 2. Typical shell materials in the preparation of MEPCMs.

Shell Type	Shell Materials	Core Materials	Encapsulation Methods	Phase Change Enthalpy (J/g)	Encapsulation Rate (%)	Refs.
Organic shells	MF	Lauryl alcohol	In-situ polymerization	187.5	93.1	[28]
	UF	Paraffins	In-situ polymerization	72.4	52.8	[32]
	PU	Methyl laurate	Interfacial polymerization	136.2	-	[46]
	PMMA	Na ₂ HPO ₄ ·12H ₂ O	Solvent evaporation	142.9	80.4	[41]
	Polyurea	CaCl ₂ ·6H ₂ O	Interfacial polymerization	118.3	71	[43]
	PS	N-tetradecane	In-situ polymerization	98.71	44.7	[53]
	Starch	N-heptadecane	Interfacial polymerization	187.27	78.27	[54]
Inorganic shells	SiO ₂	N-octadecane	Interfacial polymerization	109.5	51.5	[56]
		Mannitol	Sol-gel	252.66	89.6	[69]
	CaCO ₃	N-tetradecane	Self-assembly	58.54	25.86	[74]
	rGO	SA	Pickering emulsion polymerization	159	74.3	[79]
	TiO ₂	N-eicosane	Interfacial polymerization	188.27	-	[82]

Shell Type	Shell Materials	Core Materials	Encapsulation Methods	Phase Change Enthalpy (J/g)	Encapsulation Rate (%)	Refs.
Organic-inorganic hybrid shells	MF-SiO ₂	N-hexadecanol	Pickering emulsion polymerization	163.76	74.6	[86]
	PMMA-BN/TiO ₂	Paraffin	Pickering emulsion polymerization	124.4	72.1	[87]
	P(MMA-co-BA)-TiO ₂	Paraffin	Pickering emulsion polymerization	90.12	36.09	[88]
	PUA-TiO ₂	N-octadecane	Interfacial polymerization	181.1	77.3	[89]
	PS-GO	N-hexadecane	Pickering emulsion polymerization	186.8	78.5	[91]

shows a good development prospect in many applications. Most of MEPCMs are spherical with a particle size from 1 to 1000 μm , and their mass of PCMs cores vary from 20% to 95% in the total mass of MEPCMs [93]. Typical preparation strategies of the MEPCMs were described as follows. It can be mainly divided into physical method, chemical method, and physical-chemical method according to the synthesis mechanism.

3.1. Physical Method

In general, the physical methods for preparing MEPCMs mainly include spray drying and solvent evaporation [94] [95]. The spray drying method is that the core material and the shell material are co-dissolved in a solvent, and the mixture is sent into a heating chamber in the form of small droplets for heating. During the heating process, the solvent will evaporate, and finally the microcapsules are separated. For example, Borregro et al. microencapsulated the paraffin by spray drying, and the encapsulation efficiency reached 63%. Besides, they found that the properties of these MEPCMs were closely related to where they were collected in the spray dryer, and the MEPCMs was highly stable and reversible even after 3000 cycles [95]. Overall, the spray drying method is relatively simple to operate and has a high production efficiency, but it is not suitable for inorganic PCMs [96]. Another physical synthesis method is the solvent evaporation method [97]. Specifically, the polymer shell materials were dissolved in volatile solvent, and then adding PCMs into above solution to form emulsion, finally the shell is formed on the droplet surface by evaporating the solvent.

3.2. Chemical Method

Chemical method is the most widely used method to prepare MEPCMs. It usually uses free radical polymerization to form oil-in-water or water-in-oil emulsions, and reacts on the oil/water (O/W) interface to form shell materials. The representative and commonly used chemical methods include in-situ polymerization, interfacial polymerization,

suspension polymerization and emulsion polymerization. Typically, the in-situ polymerization method is to emulsify the core material to form oil-in-water emulsion droplets under the action of emulsifier, and then the obtained O/W emulsion droplets were catalytically polymerized with monomers or prepolymers under certain conditions to form a polymer shell, and finally cured to form MEPCMs. Generally, most of MEPCMs with MF and UF shells are synthesized by in-situ polymerization. Notably, this synthesis method can achieve the synergistic integration of high encapsulation efficiency and uniform coating, but the operation process is relatively complex and may cause some environmental pollution [98]. Another chemical method for preparing MEPCMs is interfacial polymerization. In the interfacial polymerization, the core material and hydrophobic monomer are used as the oil phase, while the emulsifier and deionized water serve as the water phase, which are emulsified to form an oil-in-water emulsion, and finally polymerize at the O/W interface to form a shell under appropriate conditions. Zhang et al. synthesized a n-octadecane-based MEPCMs with a polyurea shell by interfacial polymerization. It was found that when the core-shell ratio was 7/3, the MEPCMs exhibited better phase transition performance, better permeation resistance and higher encapsulation efficiency [99]. In general, interfacial polymerization is easy to operate and low cost, but the reaction speed is often too fast, resulting in the properties of final product is more difficult to control [100]. Besides, suspension polymerization is to mix the PCMs, reaction monomers and initiator as the oil phase, which is then suspended in the water phase to form emulsion droplets under the action of surfactants, finally polymerize to form MEPCMs [101]. Typical MEPCMs with organic shell materials such as PMMA and PS are usually prepared by suspension polymerization. Compared with above polymerization methods, the suspension polymerization usually has a higher encapsulation rate and strong thermal regulation ability, but the production cost is also relatively higher [102]. In addition, the emulsion polymerization method is to mix the PCMs with reaction monomers, and add emulsifiers to form the O/W emulsions, finally initiate polymerization to form microcapsules under the action of initiator [103][104]. Particularly, Pickering emulsion polymerization has been widely applied to prepare MEPCMs in recent years due to the superior mechanical properties and thermal stability of as-obtained MEPCMs. Moreover, Pickering emulsion polymerization is more environmentally friendly and easy to obtain polymer/inorganic hybrid shells [102][105]. Wang et al. prepared a MEPCMs with Pickering emulsion polymerization by introducing modified SiO_2 and TiC nanoparticles as emulsifiers [106]. The obtained MEPCMs exhibited well-defined core-shell structure, and have good heat storage and release properties, superior thermal stability, and enhanced thermal conductivity. So far, Pickering emulsion polymerization has become an important part of the methods for preparing of advanced MEPCMs due to its simplicity and economy.

3.3. Physical-Chemical Method

Physical-chemical methods are usually used to prepare microcapsules under external force and chemical reaction by combining physical processes such as heating and cooling with chemical processes such as crosslinking and condensation. Coacervation is a typical and commonly used physical-chemical method, which can be further divided into single coacervation and complex coacervation method [107][108]. For example, complex coacervation method is to form emulsion by mixing PCMs with a polymer, then emulsifying with another polymer to form stable emulsion, and finally condensing to form MEPCMs. Sol-gel method is to hydrolyze the reaction monomer to form sol solution, and then mix it with the PCMs to form emulsion [109][110]. Under certain reaction conditions, the gel shell is generated around the PCMs droplet through polycondensation reaction [111].

In summary, there are many encapsulation methods that can be used to prepare MEPCMs. However, as shown in **Table 3**, different preparation methods all have some advantages and disadvantages. For example, although physical methods are simpler and more economical, the prepared MEPCMs are usually agglomerated together. Moreover, Pickering emulsion polymerization is particularly suitable for the preparation of MEPCMs with organic-inorganic hybrid shells, which is of great significance for achieving the enhanced thermal conductivity and functionalization of MEPCMs, but still faces some challenges for large-scale implementation. Therefore, in practical applications, the selection of an encapsulation method not only depends on the performance and parameters of MEPCMs (e.g., size, size distribution, chemical stability, and thermal stability), but also is inextricably linked to the polymerization operability, cost, etc.

Table 3. Comparison and summary of the different preparation methods of MEPCMs.

Types	Methods	Advantages	Disadvantages	Scope of Applications
Physical method	Spray drying	Simple operation High production efficiency Wide range of sizes	Low packaging rate Not used for inorganic PCMs	Organic PCMs Heat sensitive material
	Solvent evaporation	Low cost	Low encapsulation efficiency	Inorganic PCMs
	In-situ polymerization	High encapsulation efficiency Stable shape Uniform coating	Complex operation Harmful for the environment	Organic PCMs Inorganic PCMs Organic shell material such as MF and UF
	Interfacial polymerization	High reaction speed Simple operation Low permeability	The monomer is required to have a high reactivity Harmful for the environment	Organic PCMs Inorganic PCMs Organic shell material such as UF
Chemical method	Suspension polymerization	Environmentally friendly Facile reaction condition High packaging rate	High energy consumption Expensive Not used for inorganic PCMs	Organic PCMs Large grained Organic shell material such as PMMA
	Emulsion polymerization	Stable High packaging rate High preparation efficiency Environmentally friendly	Complicated Expensive	Organic PCMs Inorganic PCMs Organic shell material such as PMMA Polymer/inorganic hybrid shell
Physical-chemical	Coacervation	Simple equipment Good control of the	Difficult to scale-up Not used for inorganic	Organic PCMs Organic shell material

Types	Methods	Advantages	Disadvantages	Scope of Applications
method		particle size and thickness	PCMs Agglomeration	
	Sol-gel method	High thermal stability Strong controllability	Non-insulated and limited in building applications	Organic PCMs Inorganic PCMs Inorganic shell material

1. Sarı, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. *Appl. Therm. Eng.* 2007, 27, 1271–1277.
2. Rodriguez-Ubinas, E.; Ruiz-Valero, L.; Vega, S.; Neila, J. Applications of phase change material in highly energy-efficient houses. *Energy Build.* 2012, 50, 49–62.
3. Huang, L.; Ning, J.; Yang, Y.; Tian, C.; Lv, J.; Zeng, F.; Liu, Q.; Zhao, F.; Cai, X.; Kong, W. Thermal-Conductive, Dynamic Cross-Linked Solid–Solid Phase Change Composites toward Sustainable Energy Utilization. *Ind. Eng. Chem. Res.* 2022, 61, 6448–6457.
4. Zhang, Y.; Wang, J.; Qiu, J.; Jin, X.; Umair, M.M.; Lu, R.; Zhang, S.; Tang, B. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. *Appl. Energy* 2019, 237, 83–90.
5. Gou, J.; Liu, W. Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. *Appl. Therm. Eng.* 2019, 152, 362–369.
6. Farzanehnia, A.; Khatibi, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. *Energy Convers. Manag.* 2019, 179, 314–325.
7. Jiang, Y.; Liu, J.; Luo, W.; Quan, X.; Li, H.; Huang, J.; Feng, W. High-energy and light-actuated phase change composite for solar energy storage and heat release. *Surf. Interfaces* 2021, 24, 101071.
8. Arıcı, M.; Bilgin, F.; Nižetić, S.; Karabay, H. PCM integrated to external building walls: An optimization study on maximum activation of latent heat. *Appl. Therm. Eng.* 2020, 165, 114560.
9. Hu, H. Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. *Compos. Part B Eng.* 2020, 195, 108094.
10. Jiang, Y.; Ding, E.; Li, G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. *Polymer* 2002, 43, 117–122.
11. Chandra, D.; Chellappa, R.; Chien, W.-M. Thermodynamic assessment of binary solid-state thermal storage materials. *J. Phys. Chem. Solids* 2005, 66, 235–240.

12. Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. *Renew. Sustain. Energy Rev.* 2007, 11, 1913–1965.
13. Tao, J.; Luan, J.; Liu, Y.; Qu, D.; Yan, Z.; Ke, X. Technology development and application prospects of organic-based phase change materials: An overview. *Renew. Sustain. Energy Rev.* 2022, 159, 112175.
14. He, B.; Martin, V.; Setterwall, F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. *Energy* 2004, 29, 1785–1804.
15. Akgün, M.; Aydin, O.; Kaygusuz, K. Experimental study on melting/solidification characteristics of a paraffin as PCM. *Energy Convers. Manag.* 2007, 48, 669–678.
16. Hoshi, A.; Mills, D.R.; Bittar, A.; Saitoh, T.S. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. *Sol. Energy* 2005, 79, 332–339.
17. Zhou, D.; Eames, P. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures. *Sol. Energy Mater. Sol. Cells* 2016, 157, 1019–1025.
18. Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yıldırım, B.; Sahin, A. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. *Renew. Sustain. Energy Rev.* 2017, 70, 1072–1089.
19. Wang, L.; Meng, D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. *Appl. Energy* 2010, 87, 2660–2665.
20. Ke, H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy. *Appl. Therm. Eng.* 2017, 113, 1319–1331.
21. Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. *Appl. Energy* 2019, 235, 846–873.
22. Su, J.; Wang, L.; Ren, L. Fabrication and thermal properties of microPCMs: Used melamine-formaldehyde resin as shell material. *J. Appl. Polym. Sci.* 2006, 101, 1522–1528.
23. Zhu, K.; Qi, H.; Wang, S.; Zhou, J.; Zhao, Y.; Su, J.; Yuan, X. Preparation and characterization of melamine-formaldehyde resin micro-and nanocapsules filled with n-dodecane. *J. Macromol. Sci. Part B* 2012, 51, 1976–1990.
24. Xu, L.; Zhao, Q.; Li, Y.; He, F.; Zhou, Y.; He, R.; Fan, J.; Zhang, K.; Yang, W. Nanodiamond-Modified Microencapsulated Phase-Change Materials with Superhydrophobicity and High Light-to-Thermal Conversion Efficiency. *Ind. Eng. Chem. Res.* 2020, 59, 21736–21744.

25. Su, J.-F.; Wang, S.-B.; Zhang, Y.-Y.; Huang, Z. Physicochemical properties and mechanical characters of methanol-modified melamine-formaldehyde (MMF) shell microPCMs containing paraffin. *Colloid Polym. Sci.* 2011, 289, 111–119.

26. Chen, Z.; Wang, J.; Yu, F.; Zhang, Z.; Gao, X. Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. *J. Mater. Chem. A* 2015, 3, 11624–11630.

27. Huang, R.; Li, W.; Wang, J.; Zhang, X. Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. *New J. Chem.* 2017, 41, 9424–9437.

28. Yu, F.; Chen, Z.-H.; Zeng, X.-R. Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier. *Colloid Polym. Sci.* 2009, 287, 549–560.

29. Zhang, Z.; Zhang, Z.; Chang, T.; Wang, J.; Wang, X.; Zhou, G. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. *Chem. Eng. J.* 2022, 428, 131164.

30. Mao, J.; Yang, H.; Zhou, X. In situ polymerization of uniform poly (urea–formaldehyde) microcapsules containing paraffins under the high-speed agitation without emulsifier. *Polym. Bull.* 2012, 69, 649–660.

31. Wang, G.; Xu, W.; Hou, Q.; Guo, S. Microwave-assisted synthesis of poly (urea-formaldehyde)/lauryl alcohol phase change energy storage microcapsules. *Polym. Sci. Ser. B* 2016, 58, 321–328.

32. Xin, C.; Tian, Y.; Wang, Y.; Huang, X. Effect of curing temperature on the performance of microencapsulated low melting point paraffin using urea-formaldehyde resin as a shell. *Text. Res. J.* 2014, 84, 831–839.

33. Sánchez-Silva, L.; Lopez, V.; Cuenca, N.; Valverde, J.L. Poly (urea-formaldehyde) microcapsules containing commercial paraffin: In situ polymerization study. *Colloid Polym. Sci.* 2018, 296, 1449–1457.

34. Liu, C.; Ma, L.; Rao, Z.; Li, Y. Synthesis and thermal properties of magnesium sulfate heptahydrate/urea resin as thermal energy storage micro-encapsulated phase change material. *J. Heat Transf.* 2018, 140, 014501.

35. Huang, Z.-h.; Yu, X.; Li, W.; Liu, S.-x. Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material. *J. For. Res.* 2015, 26, 253–260.

36. Tohmura, S.-i.; Inoue, A.; Sahari, S.H. Influence of the melamine content in melamine-urea-formaldehyde resins on formaldehyde emission and cured resin structure. *J. Wood Sci.* 2001, 47,

451–457.

37. Rezvanpour, M.; Hasanzadeh, M.; Azizi, D.; Rezvanpour, A.; Alizadeh, M. Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. *Mater. Chem. Phys.* 2018, 215, 299–304.

38. Yu, F.; Chen, Z.H.; Zeng, X.R.; Gao, X.N.; Zhang, Z.G. Poly(methyl methacrylate) copolymer nanocapsules containing phase-change material (n-dodecanol) prepared via miniemulsion polymerization. *J. Appl. Polym. Sci.* 2015, 132, 42334.

39. Sarı, A.; Alkan, C.; Karaipekli, A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. *Appl. Energy* 2010, 87, 1529–1534.

40. Sarı, A.; Alkan, C.; Biçer, A.; Altuntaş, A.; Bilgin, C. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. *Energy Convers. Manag.* 2014, 86, 614–621.

41. Wang, T.Y.; Huang, J. Synthesis and characterization of microencapsulated sodium phosphate dodecahydrate. *J. Appl. Polym. Sci.* 2013, 130, 1516–1523.

42. Spernath, L.; Magdassi, S. Polyurea nanocapsules obtained from nano-emulsions prepared by the phase inversion temperature method. *Polym. Adv. Technol.* 2011, 22, 2469–2473.

43. Yang, J.M.; Kim, J.S. The microencapsulation of calcium chloride hexahydrate as a phase-change material by using the hybrid coupler of organoalkoxysilanes. *J. Appl. Polym. Sci.* 2018, 135, 45821.

44. Ghoghaei, M.S.; Mahmoudian, A.; Mohammadi, O.; Shafii, M.B.; Jafari Mosleh, H.; Zandieh, M.; Ahmadi, M.H. Calorimetry. A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. *J. Therm. Anal. Calorim.* 2021, 145, 245–268.

45. Li, X.; Wang, C.; Wang, Y.; Wang, B.; Feng, X.; Mao, Z.; Sui, X. Flexible and resilient photothermal polyurethane film from polydopamine-coated phase change microcapsules. *Sol. Energy Mater. Sol. Cells* 2021, 227, 111111.

46. Hu, D.; Wang, Z.; Ma, W. Fabrication and characterization of a novel polyurethane microencapsulated phase change material for thermal energy storage. *Prog. Org. Coat.* 2021, 151, 106006.

47. Wang, Z.; Ma, W.; Hu, D.; Wu, L. Synthesis and characterization of microencapsulated methyl laurate with polyurethane shell materials via interfacial polymerization in Pickering emulsions. *Colloids Surf. A Physicochem. Eng. Asp.* 2020, 600, 124958.

48. Yan, J.; Hu, D.; Ma, W.; Chen, W. Preparation and characterization of soy polyols-based PU shell microencapsulated phase change materials for reliable thermal energy storage. *Int. J. Energy Res.* 2022, 46, 23364–23376.

49. Sarı, A.; Alkan, C.; Dögüşcü, D.K.; Kızıl, Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. *Sol. Energy* 2015, 115, 195–203.

50. Dögüşcü, D.K.; Kızıl, Ç.; Bicer, A.; Sarı, A.; Alkan, C. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications. *Sol. Energy* 2018, 160, 32–42.

51. Dögüşcü, D.K.; Altıntaş, A.; Sarı, A.; Alkan, C. Polystyrene microcapsules with palmitic-capric acid eutectic mixture as building thermal energy storage materials. *Energy Build.* 2017, 150, 376–382.

52. Sami, S.; Sadrameli, S.; Etesami, N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. *Appl. Therm. Eng.* 2018, 130, 1416–1424.

53. Fang, Y.; Yu, H.; Wan, W.; Gao, X.; Zhang, Z. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. *Energy Convers. Manag.* 2013, 76, 430–436.

54. Irani, F.; Ranjbar, Z.; Moradian, S.; Jannesari, A. Microencapsulation of n-heptadecane phase change material with starch shell. *Prog. Org. Coat.* 2017, 113, 31–38.

55. Fang, Y.; Wei, H.; Liang, X.; Wang, S.; Liu, X.; Gao, X.; Zhang, Z. Preparation and thermal performance of silica/n-tetradecane microencapsulated phase change material for cold energy storage. *Energy Fuels* 2016, 30, 9652–9657.

56. Liang, S.; Li, Q.; Zhu, Y.; Chen, K.; Tian, C.; Wang, J.; Bai, R. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion. *Energy* 2015, 93, 1684–1692.

57. Tan, J.; Zhu, K.; Ou, X.; Xu, P.; Cheng, Y. Process and performance of palmitic phase-change microcapsules using chemical precipitation method. *J. Appl. Polym. Sci.* 2022, 139, 51962.

58. Li, B.; Liu, T.; Hu, L.; Wang, Y.; Gao, L. Fabrication and properties of microencapsulated SiO₂ phase change composite for thermal energy storage. *ACS Sustain. Chem. Eng.* 2013, 1, 374–380.

59. Yuan, H.; Bai, H.; Zhang, X.; Zhang, J.; Zhang, Z.; Yang, L. Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage. *Sol. Energy* 2018, 173, 42–52.

60. Zhang, H.; Wang, X.; Wu, D.J. Silica encapsulation of n-octadecane via sol–gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance.

J. Colloid Interface Sci. 2010, 343, 246–255.

61. Şahan, N.; Paksoy, H. Determining influences of SiO₂ encapsulation on thermal energy storage properties of different phase change materials. *Sol. Energy Mater. Sol. Cells* 2017, 159, 1–7.

62. Song, S.; Dong, L.; Qu, Z.; Ren, J.; Xiong, C. Microencapsulated capric–stearic acid with silica shell as a novel phase change material for thermal energy storage. *Appl. Therm. Eng.* 2014, 70, 546–551.

63. Tang, F.; Liu, L.; Alva, G.; Jia, Y.; Fang, G. Synthesis and properties of microencapsulated octadecane with silica shell as shape–stabilized thermal energy storage materials. *Sol. Energy Mater. Sol. Cells* 2017, 160, 1–6.

64. Zhu, Y.; Liang, S.; Chen, K.; Gao, X.; Chang, P.; Tian, C.; Wang, J.; Huang, Y. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage. *Energy Convers. Manag.* 2015, 105, 908–917.

65. Zhu, Y.; Liang, S.; Wang, H.; Zhang, K.; Jia, X.; Tian, C.; Zhou, Y.; Wang, J. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials. *Energy Convers. Manag.* 2016, 119, 151–162.

66. Pourmohamadian, H.; Sheikhzadeh, G.A.; Rahimi-Nasrabadi, M.; Tabrizi, H.B. Fabrication and characterization of microencapsulated PA with SiO₂ shell through sol–gel synthesis via sodium silicate precursor. *J. Mater. Sci. Mater. Electron.* 2017, 28, 9990–9997.

67. Geng, L.; Wang, S.; Wang, T.; Luo, R. Facile synthesis and thermal properties of nanoencapsulated n-dodecanol with SiO₂ shell as shape-formed thermal energy storage material. *Energy Fuels* 2016, 30, 6153–6160.

68. He, F.; Wang, X.; Wu, D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. *Renew. Energy* 2015, 74, 689–698.

69. Pethurajan, V.; Sivan, S.; Konatt, A.J.; Reddy, A.S. Facile approach to improve solar thermal energy storage efficiency using encapsulated sugar alcohol based phase change material. *Sol. Energy Mater. Sol. Cells* 2018, 185, 524–535.

70. Deng, H.; Yang, Y.; Tang, X.; Li, Y.; He, F.; Zhang, Q.; Huang, Z.; Yang, Z.; Yang, W. Interfaces. Phase-change composites composed of silicone rubber and SiO₂@ PDA double-shelled microcapsules with low leakage rate and improved mechanical strength. *ACS Appl. Mater. Interfaces* 2021, 13, 39394–39403.

71. Deng, H.; Yang, W.; Cai, T.; He, F.; Li, Y.; Zhang, K.; He, R. Phase-change composites silicone rubber/ SiO₂ microcapsules with different core/shell ratio for thermal management. *Int. J. Energy Res.* 2021, 45, 18033–18047.

72. Yu, S.; Wang, X.; Wu, D. fuels. Self-assembly synthesis of microencapsulated n-eicosane phase-change materials with crystalline-phase-controllable calcium carbonate shell. *Energy Fuels* 2014, 28, 3519–3529.

73. Wang, T.; Wang, S.; Luo, R.; Zhu, C.; Akiyama, T.; Zhang, Z. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. *Appl. Energy* 2016, 171, 113–119.

74. Fang, Y.; Zou, T.; Liang, X.; Wang, S.; Liu, X.; Gao, X.; Zhang, Z. Engineering. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage. *ACS Sustain. Chem. Eng.* 2017, 5, 3074–3080.

75. Jiang, Z.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Microencapsulated paraffin phase-change material with calcium carbonate shell for thermal energy storage and solar-thermal conversion. *Langmuir* 2018, 34, 14254–14264.

76. Wang, T.; Wang, S.; Geng, L.; Fang, Y. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. *Appl. Energy* 2016, 179, 601–608.

77. Yang, W.; Zhang, L.; Guo, Y.; Jiang, Z.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Novel segregated-structure phase change materials composed of graphene microencapsules with high latent heat and thermal conductivity. *J. Mater. Sci.* 2018, 53, 2566–2575.

78. Dao, T.D.; Jeong, H.M. Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. *Sol. Energy Mater. Sol. Cells* 2015, 137, 227–234.

79. Advincula, P.; De Leon, A.; Rodier, B.; Kwon, J.; Advincula, R.; Pentzer, E. Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles. *J. Mater. Chem. A* 2018, 6, 2461–2467.

80. Chai, L.; Wang, X.; Wu, D. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. *Appl. Energy* 2015, 138, 661–674.

81. Jiang, B.; Wang, X.; Wu, D. Fabrication of microencapsulated phase change materials with TiO₂/Fe₃O₄ hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. *Appl. Energy* 2017, 201, 20–33.

82. Liu, H.; Wang, X.; Wu, D.; Ji, S. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. *Sol. Energy Mater. Sol. Cells* 2019, 193, 184–197.

83. Hou, M.; Jiang, Z.; Chu, F.; Zhang, X.; Lai, N.-C. TiO₂/TiN composite phase change microcapsules: Efficient visible light-driven reversible solid-liquid phase transition. *Colloids Surf. A Physicochem. Eng. Asp.* 2022, 651, 129674.

84. Chen, X.; Tang, Z.; Liu, P.; Gao, H.; Chang, Y.; Wang, G. Smart utilization of multifunctional metal oxides in phase change materials. *Matter* 2020, 3, 708–741.

85. Xu, L.; Zhang, K.; He, R.; Yang, A.; Su, L.; Li, Y.; He, F.; Jiang, S.; Yang, W. Phase change composites based on double-shell microcapsules with high latent heat and low leakage rate for thermal energy storage and temperature regulation. *J. Energy Storage* 2022, 55, 105428.

86. Yin, D.; Liu, H.; Ma, L.; Zhang, Q. Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in Pickering emulsion. *Polym. Adv. Technol.* 2015, 26, 613–619.

87. Sun, N.; Xiao, Z. Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO₂ hybrid shell for thermal energy storage. *Energy Fuels* 2017, 31, 10186–10195.

88. Qiu, X.Z.; Tao, Y.; Xu, X.Q.; He, X.H.; Fu, X.Y. Synthesis and characterization of paraffin/TiO₂-P (MMA-co-BA) phase change material microcapsules for thermal energy storage. *J. Appl. Polym. Sci.* 2018, 135, 46447.

89. Zhao, A.; An, J.; Yang, J.; Yang, E.-H. Microencapsulated phase change materials with composite titania-polyurea (TiO₂-PUA) shell. *Appl. Energy* 2018, 215, 468–478.

90. Gao, X.; Zhao, T.; Luo, G.; Zheng, B.; Huang, H.; Han, X.; Chai, Y. Facile method of fabricating microencapsulated phase change materials with compact bonding polymer–silica hybrid shell using TEOS/MPS. *Thermochim. Acta* 2018, 659, 183–190.

91. Zhang, Y.; Zheng, X.; Wang, H.; Du, Q. Encapsulated phase change materials stabilized by modified graphene oxide. *J. Mater. Chem. A* 2014, 2, 5304–5314.

92. Zhang, L.; Wu, K.; Chen, Y.; Liu, R.; Luo, J. The preparation of linseed oil loaded graphene/polyaniline microcapsule via emulsion template method for self-healing anticorrosion coatings. *Colloids Surf. A Physicochem. Eng. Asp.* 2022, 651, 129771.

93. Shchukina, E.; Graham, M.; Zheng, Z.; Shchukin, D. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. *R. Soc. Chem.* 2018, 47, 4156–4175.

94. Nandiyanto, A.B.D.; Okuyama, K. Progress in developing spray drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. *Adv. Powder Technol.* 2011, 22, 1–19.

95. Borreguero, A.; Valverde, J.; Rodríguez, J.; Barber, A.; Cubillo, J.; Carmona, M. Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying. *Chem. Eng. J.* 2011, 166, 384–390.

96. Milián, Y.E.; Gutierrez, A.; Grageda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. *Renew. Sustain. Energy Rev.* 2017, 73, 983–999.

97. Chen, H.; Zhang, L.; Li, M.; Ren, Y.; Xie, G. Ultralow friction polymer composites containing highly dispersed and thermally robust microcapsules. *Colloids Surf. A Physicochem. Eng. Asp.* 2022, 634, 127989.

98. Srinivasaraonaik, B.; Singh, L.; Tyangi, I.; Rawat, A.; Sinha, S. Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage. *Int. J. Energy Res.* 2020, 44, 3854–3864.

99. Zhang, H.; Wang, X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. *Sol. Energy Mater. Sol. Cells* 2009, 93, 1366–1376.

100. Giro-Paloma, J.; Martínez, M.; Cabeza, L.F.; Fernández, A.I. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. *Renew. Sustain. Energy Rev.* 2016, 53, 1059–1075.

101. Sánchez-Silva, L.; Rodríguez, J.F.; Sánchez, P. Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. *Colloids Surf. A Physicochem. Eng. Asp.* 2011, 390, 62–66.

102. Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid–liquid phase change materials and their encapsulation technologies. *Renew. Sustain. Energy Rev.* 2015, 48, 373–391.

103. Şahan, N.; Paksoy, H. Designing behenic acid microcapsules as novel phase change material for thermal energy storage applications at medium temperature. *Int. J. Energy Res.* 2020, 44, 3922–3933.

104. Puupponen, S.; Seppälä, A.; Vartia, O.; Saari, K.; Ala-Nissilä, T. Preparation of paraffin and fatty acid phase changing nanoemulsions for heat transfer. *Thermochim. Acta* 2015, 601, 33–38.

105. Bakeshlou, Z.; Nikfarjam, N. Thermoregulating Papers Containing Fabricated Microencapsulated Phase Change Materials through Pickering Emulsion Templating. *Ind. Eng. Chem. Res.* 2020, 59, 20253–20268.

106. Wang, H.; Zhao, L.; Song, G.; Tang, G.; Shi, X. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO₂/TiC-stabilized pickering emulsion polymerization. *Sol. Energy Mater. Sol. Cells* 2018, 175, 102–110.

107. Onder, E.; Sarier, N.; Cimen, E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. *Thermochim. Acta* 2008, 467, 63–72.

108. Konuklu, Y.; Unal, M.; Paksoy, H.O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. *Sol. Energy Mater. Sol. Cells* 2014, 120, 536–542.

109. Latibari, S.T.; Mehrali, M.; Mehrali, M.; Mahlia, T.M.I.; Metselaar, H.S.C. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. *Energy* 2013, 61, 664–672.

110. Cao, L.; Tang, F.; Fang, G. Buildings. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. *Energy Build.* 2014, 72, 31–37.

111. Chen, Q.; Ni, L.; Jiang, J.; Parker, T.; Chen, Z.; Cheng, Z.; Jiang, W.; Wang, Q. Inhibition of exothermic runaway of batch reactors for the homogeneous esterification using nano-encapsulated phase change materials. *Appl. Therm. Eng.* 2020, 178, 115531.

Retrieved from <https://encyclopedia.pub/entry/history/show/97366>