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All organisms and cells respond to various stress conditions by up-regulating the expression and/or activation of a

group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they

are commonly recognized as HSPs due to the first experiments showing their increased transcription after

application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport

and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. In addition,

they play a crucial role in gene expression regulation, DNA replication, signal transduction, cell differentiation,

apoptosis, cellular senescence or immortalization, and intercellular communications. Heat shock proteins are

classified according to their molecular weight in super heavy, 100, 90, 70, 60, 40, and small HSPs. Although they

are the most highly conserved, ubiquitous, and abundant proteins in all organisms, their cellular stress response

can depend on the class and stimulus.

skeletal muscle  physical exercise  heat shock protein 60

1. Fiber-Types of Skeletal Muscle and Its Adaptation to
Physical Exercise

Skeletal muscle is a heterogeneous tissue containing fibers with different morphological, metabolic, and functional

properties. Muscle fibers are typically identified by the expression of a multigene family of Myosin Heavy Chains

(MHCs). Their sequence variability has been associated with their specific structure and function, but the codified

actin-based motor proteins are conserved . In the skeletal muscle they are classified as MHC-I, MHC-IIa, MHC-

IIx, and MHC-IIb . The MHC-I, IIa, and IIx fiber-types are expressed to variable degrees in both small animals

(mice, rats, and rabbits) and human skeletal muscle. Instead, MHC-IIb fibers are solely expressed in small animals’

skeletal muscle . In mammals, ‘‘hybrid’’ fibers (i.e., type I/IIa, IIa/x, IIx/b) can occur when different MHC transcripts

coexist in a single fiber .

Although the structural and functional muscle requests define privileged associations between MHC isoforms, other

common fiber-type classifications are used. One of them is related to the contractile response (or speed of

contraction) distinguishing between slow or fast muscle fibers. In addition, cellular metabolism has been used as

another parameter to distinguish the different types of myofibers with glycolytic metabolism and fibers with a

massive mitochondrial presence and prevalent aerobic metabolism. Notably, MHC isoform expression correlates

with fiber-type morphology, metabolism, and function . In general terms, MHC-I-expressing fibers are small, rich

in oxidative enzymes, slow in contraction, and have a greater resistance to fatigue, while MHC-IIb-expressing

fibers are large, rich in glycolytic enzymes, and fast in contraction due to the developed sarcoplasmic reticulum that
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allows the rapid release of calcium ions, and a predominantly anaerobic metabolism . Specifically, fiber

contraction correlates with myosin ATPase activity with relative velocities of I < IIa < IIx < IIb . Furthermore,

skeletal muscle can be classified as postural or non-postural according to its function and the percentage of each

fiber-type . Although the four main types of skeletal muscle fibers are present in different percentages among the

mammal species and within the same species therein, they are represented differently in the various structures of

the musculoskeletal system (Table 1) . Moreover, basal mitochondrial content has been shown to vary

between species and is fiber-type-specific in mouse, rat, and human skeletal muscles .

Table 1. Fiber-type distribution and mitochondrial content in different skeletal muscles.

Skeletal Muscles Species Gender Main Fiber-Types % Mitochondrial Content References

Vastus Lateralis Human Male I 49–IIa 42% I > IIa > IIx

Plantaris Rat Male IIx 45–IIa 21% IIa > I > IIx > IIb

Plantaris Rat Female IIb 46–IIx 40%  

Soleus Rat Male I 97% IIa > I > IIx > IIb

Soleus Rat Female I 99%  

Gastrocnemius Rat Male IIx 43–IIb 26%  

Soleus Mouse Male IIa 49–I 31%  

Soleus Mouse Female I 49–IIa 35%  

EDL Mouse Male IIb 63–IIx 18%  

EDL Mouse Female IIx 37–IIb 35%  

Gastrocnemius Mouse Male IIb 56–IIa 21% IIa > IIx > I > IIb

EDL, extensor digitorum longus; I, type I; IIa, type IIa; IIx, type IIx; IIb, type IIb.

One of the most surprising characteristics of the myofibers of the skeletal muscle is the high degree of plasticity as

an adaptive response to physiological and non-physiological requests . Plasticity is the ability of a tissue to

modify its composition by adapting it to changing functional needs. Repeated, prolonged, or simple changes in

functional requests can both quantitatively and qualitatively modify muscle tissue. These changes can affect the

myofibrillary system, the sarcoplasmic reticulum, the proteins involved in regulating the concentration of

intracellular calcium as well as the enzymatic systems involved in energy metabolism. The mechanism of

adaptation of the functional requests is based primarily on the transformation of the MHC content, with a shift of the

MHC fibers that affects the overall speed of contraction of the muscle. However, it is also possible that an increase

in the speed of the same cellular type occurs in the absence of variations of the expressed MHC isoforms .

The increased contractile activity following physical exercise activates several signal pathways that lead to
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significant phenotypic changes such as MHC fiber transitions, enhanced mitochondrial biogenesis, and

angiogenesis. Changes in the expression pattern of MHC isoforms and in the cross-sectional area (CSA) of the

skeletal muscle cells, in response to different training protocols, are related to the changes in strength and power

that the muscle undergoes . For these reasons, physical exercise induces muscle hypertrophy that is followed

by the upregulation of contractile elements’ synthesis. Literature data have shown the hypertrophic response for all

three major types of fibers (MCH-I, IIa, and IIx) following resistance training, both in young subjects and in elderly

subjects . However, exercise-induced hypertrophy seems to affect fast muscle fibers more than type I fibers .

Exercise can therefore induce changes in the expression of MHCs, thus causing a switch from type IIb to IIx and

IIa and, in rare cases, also to type I. In most cases, physiological adaptations to increased activity induce a switch

to a more oxidative fast phenotype . Allen et al. showed a significant increase in the percentage of fibers

expressing MHC-IIa and a concomitant decrease in the percentage of fibers expressing MHC-IIb in mouse fast

muscles after some weeks of wheel exercise . The switch in the range IIb–IIx–IIa in mouse and rat muscle or in

the range IIx–IIa in human muscle likely reflects the total amount of activity .

Human studies have shown that strength training induces an increase in type IIa and hybrid IIa/x fibers at the

expense of fast IIx fibers. At the same time, there is an increase in the CSA in all types of myofibers, indicating a

hypertrophic effect . In fact, Kesidis et al. showed that type IIa muscle fibers in human skeletal muscle seem to

have an enzymatic profile and a rate of contraction that makes these fibers more suitable for strength performance

than fibers containing the MHC I isoform . On the other hand, endurance training seems to induce fast-to-slow

fiber transitions (from IIx to IIa, and in rare cases type I), while the CSA values remain unchanged. The

physiological advantage is the greater transduction efficiency of the mechanical energy associated with the IIa

fibers compared to the IIx fibers. However, the increased proportion of type I fibers could derive from different

training protocols, causing a significant turnover and regeneration of fibers, and also including a regeneration of the

peripheral nerve . The absence of cellular damage can be explained by the lack of the expression of embryonic

myosin isoforms and supports the results of the studies in which no variations in fiber-type I following training

protocols were detected .

2. Stress Proteins: Heat Shock Protein 60

The HSPD1 gene comprises ~17 kb with 12 exons and it is localized at chromosome locus 2q33.1. This gene

encodes a protein of 573aa corresponding to a molecular weight of 61.05 kDa known as HSP60 or Hsp60, also

commonly referred to as Cpn60 . Hsp60 belongs to group I of chaperonins . Its ATP-dependent chaperon

mechanism was thoroughly investigated for the prokaryotic homolog GroEL. Three structural domains were

identified for GroEL: apical, intermediate, and equatorial. To carry out its chaperoning function, GroEL needs to

generate a tetradecamer complex with its co-chaperon GroES (the homolog of Hsp10) . Thus, the chaperon

complex is made up of GroEL, structured in two rings with seven identical subunits, and GroES, which binds to the

apical domains of GroEL to close the cage . The chaperon mechanism is a multistep process that involves the

unfolded protein binding to GroEL apical domains. Concomitantly, ATP binds to GroEL’s equatorial domain and its

hydrolysis allows the conformational change (from trans to cis) of the GroEL apical and intermediate domains for
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the substrate encapsulation in the central cavity of the chaperon . Consecutively, the dissociation of the cis-

complex and the release of the folded protein, ADP, and GroES occurs . Although the chaperon mechanism of

the mammalian mitochondrial Hsp60-Hsp10 complex is similar, the solid-state structure appears as a symmetrical

football-shaped complex by X-ray . In humans, the mitochondrial Hsp60 exists as a homo-oligomer of seven

subunits in equilibrium with very minor populations of monomers and double-ring tetradecamers . In addition,

it was demonstrated that Hsp60 single ring could perform chaperonin-mediated folding activity in vivo .

Hsp60 is constitutively expressed under philological conditions, so much so that its knockout is incompatible with

life . At the same time, Hsp60 expression is related to numerous etio-pathological conditions . Hsp60 is

mainly localized in the mitochondria. The mitochondrial import signal (MIS) at the N-terminus drives Hsp60 from

the cytoplasm to the mitochondria . Nevertheless, one third of Hsp60 is localized to the extra-mitochondrial

sites, such as cytosol, plasma-cell membrane, inside exosomes, extracellular space, and circulation . Inside

the mitochondria, Hsp60 guarantees the correct folding of other mitochondrial proteins  as well as its

“unfoldase” activity to stabilize misfolded and aggregated proteins, making provision for the mitochondrial

biogenesis and protein homeostasis . In addition, the mitochondrial Hsp60 directs the replication and

transmission of mitochondrial DNA (mtDNA) . Otherwise, the extramitochondrial Hsp60 is involved in

intracellular protein trafficking  and peptide-hormone signaling . Interestingly, the mitochondrial and the

cytosolic Hsp60 have a contradictory role in pro-apoptotic and pro-survival mechanisms . Whether Hsp60 is

associated with carcinogenesis, specifically with tumor cell survival and proliferation, for certain tumors is used as a

good diagnostic marker . Therefore, Hsp60 exerts divergent roles in several physiological and

pathological processes, and an understanding of its structural and functional biology aspires to draw novel

pathways and to develop therapeutic strategies.

3. Stress Proteins: αB-Crystallin

HSPB1, or the CRYAB gene, encodes a 175-amino acid protein with a molecular mass of ~20 kDa . CRYAB is a

ubiquitous sHSP with highly conserved stretch that adopts a β-sandwich, immunoglobulin-like fold called the “α-

crystallin domain (ACD),” which is a characteristic hallmark of the sHSPs family . The ACD region is flanked by a

less conserved and flexible N-terminal domain (NTD) and a C-Terminal extension (CTE), which are variable in

length and sequence except for few conserved stretches .

Based on all findings related to CRYAB missense, truncating, and frame-shift mutations, specific functional roles of

these domains have been hypothesized. Indeed, mutations within ACD domain (i.e., D109H/D109A, R120G) seem

to interfere with the CRYAB oligomerization processes , while those within the CTE domain (i.e., 464delCT,

R151X, G154S, L155fs_163X, R157H) seem to compromise CRYAB chaperone function . Finally,

mutations within the NTD domain seem to prevent the building of higher order oligomeric structures . Thus,

oligomeric assembly and chaperone activity of CRYAB is inter-dependent on its NTD, ACD and CTE domains.

As all sHSPs do, CRYAB shares in the property to form globular oligomer structures that in mammalian cells are

characterized by molecular masses ranging from 50 to about 800 kDa. This ability, together with the well-known
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hetero-oligomerization property, is crucial factor in regulating the activity of this protein . This hetero oligomer is

probably unable to play an efficient protective role in stress conditions. However, the dissociation of the complex

after-exposure to heat shock or oxidative stress suggests that it could bear new protein target recognition abilities

and/or modulate those of the parental molecules .

Another intriguing property of sHSPs concerns its ability to be phosphorylated and therefore susceptible of control

by several transduction pathways. Depending on the type and/or duration of various stimuli, the fraction of

phosphorylated CRYAB ranges between 10% and 27% . Different studies demonstrate that the

phosphorylation of CRYAB shows a dual role that leads to either beneficial or deleterious outcomes depending on

the extent and duration of stress and subsequent degree of phosphorylation; a phosphorylation at initial stage of

stress is usually reversible and seems to provide a beneficial outcome, while prolonged stress can induce an

irreversible phosphorylation which may lead to a deleterious outcome . The CRYAB has three phosphorylation

sites (S19, S45, and S59) at the NTD, which play a critical role in the protein functions. While the phosphorylation

on S59 is mediated by p38 mitogen-activated protein kinase (p38 MAPK) and phosphorylation on S45 by the

extracellular signal-regulated kinase 1/2 (ERK1/2) , the kinase responsible for phosphorylation on S19 is still

unknown. Nevertheless, both unphosphorylated and phosphorylated forms of CRYAB are reported to be equally

effective in preventing in vitro assembly of glial fibrillary acidic protein and vimentin in an ATP-independent manner

. In fact, during physiological or pathological stress both CRYAB content and phosphorylation can be modulated

.

All aforementioned serine residues can be phosphorylated after various stimuli , but only a few studies have

reported their contemporary involvement in muscle tissues . To date, most of the available data are

related to CRYAB expression and/or activation at Ser59 . Moreover, the relationship

between the phosphorylation of CRYAB and its chaperone activity is contradictory. Though in general the

phosphorylation has an augmentative effect, it is possible that modulation of the activity upon phosphorylation

might depend on the target protein and its interactions . Further details about the phosphorylation of CRYAB in

various physiological or pathological conditions can be found elsewhere .

In addition to being overexpressed in stress conditions, CRYAB shares the ability of having a tissue/cell-specific

expression in the absence of stress, which can be detected in healthy adults as well as during organism

development . In mammalian cells, CRYAB is constitutively expressed in tissue with high rates of oxidative

metabolism, including the cardiac and skeletal muscle . The significance of the constitutive expression of this

sHSP is probably linked to the protection of the cells against chronic stress or to a specific function in a particular

tissue.

4. Hsp60 in Skeletal Muscle Fibers

The chaperoning systems that participate in controlling cellular homeostasis have been detected in skeletal

muscle. Small Hsp, Hsp60, Hsp70, and Hsp90 play a significant role in muscle adaptation . Nevertheless,

Hsp60 was not deeply investigated after physical exercise, which, as we have already discussed, influences
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muscle homeostasis . Hsp60 and exercise correlation appears to be rational, but literature data are restricted

and sometimes controversial (Table 2). Morton et al.  demonstrated that aerobically trained men had

significantly higher resting levels of Hsp60 in the vastus lateralis muscle (high percentage of fibers I and IIa)

compared to untrained subjects, suggesting Hsp60 as a molecular marker of physiological adaptation to aerobic

exercise. However, it has been demonstrated that in the human vastus lateralis muscle the highest mitochondrial

content is showed by type I fibers followed by type IIa > IIx (Table 1) . At the same time, an acute single bout of

endurance training that is considered an aerobic exercise did not increase the basal Hsp60 protein levels in the

same muscle . Thus, chronic training has the capacity to increase Hsp60 expression, whereas a single bout of

exercise does not. Hsp60 expression is stimulated by endurance, resistance, and mixed training, but its fiber

specificity is still debated. Hsp60 expression in the vastus lateralis of healthy active people with different training

backgrounds was considered not to be fiber-type specific . In agreement, Ogata et al.  and Soares Moura et

al.  did not show significant differences in Hsp60 levels in the plantaris and gastrocnemius, both rich fiber IIx

muscles, of male rats after endurance training. On the other hand, several groups, including ours, demonstrated

fiber-type specificity after training in specific muscles. Mattson et al.  showed that female rats trained with an

endurance protocol for 8 weeks displayed significantly higher levels of Hsp60 in the muscle plantaris, which is rich

in fiber-type IIb . No difference of Hsp60 levels was detected in the rich fiber I muscle soleus in endurance-

trained rats compared to the untrained group . Hsp60 fiber-type I specificity was reported by Samelman ,

who showed increased basal levels of Hsp60 in the soleus and not in the lateral gastrocnemius of endurance

trained rats. In agreement, our group noted Hsp60 fiber-specific expression in healthy male BALB/c mice trained

for 45 days on the treadmill. Specifically, higher levels of Hsp60 were observed in type I and IIa muscle fibers,

while type IIx and IIb fibers showed a constitutive expression of this chaperonin . Therefore, increased levels of

Hsp60 were reported after six weeks of endurance training, mainly in red gastrocnemius and soleus muscles,

which are particularly rich in type I and IIa fibers . We also correlated this physiological adaptation to an

increased expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), which

triggers the mitochondrial biogenesis and thereby avoiding the cytotoxic effects . Finally, increased

levels of Hsp60 were observed in the soleus muscle of male mice and the Extensor Digitorum Longus (EDL)

muscle of female mice after an acute single bout of endurance training .

Table 2. Hsp60 expression levels in different skeletal muscles after physical exercise.

Species/Strain Gender (Age) Skeletal MusclesProtocol TrainingHsp60 LevelsReferences

Human Male (28 ± 6 yrs) Vastus Lateralis Endurance ↑

Human Male (28 ± 6 yrs) Vastus Lateralis Acute exercise =

Rat/Wistar Male (4 months) Plantaris Endurance =

Rat/Wistar Female (ns) Plantaris Endurance ↑

Rat/Fischer 344 Male (10 months) Soleus Endurance ↑

Rat/Wistar Female (ns) Soleus Endurance =
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Species/Strain Gender (Age) Skeletal MusclesProtocol TrainingHsp60 LevelsReferences

Rat/Wistar Male (ns) Gastrocnemius Endurance =

Rat/Fischer 344 Male (10 months) Gastrocnemius Endurance =

Mouse/BALB/c Male (7 weeks) Soleus Endurance ↑

Mouse/BALB/c Male (12 weeks) Soleus Acute exercise ↑

Mouse/BALB/c Female (12 weeks) Soleus Acute exercise =

Mouse/BALB/c Male (12 weeks) EDL Acute exercise =

Mouse/BALB/c Female (12 weeks) EDL Acute exercise ↑

Mouse/BALB/c Male (7 weeks) Gastrocnemius Endurance =

Hsp60, heat shock protein 60; EDL, extensor digitorum longus; arrow, increased levels of Hsp60; =, no difference;

ns, not specified; yrs, years.
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