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Despite the harsh conditions, fungi are ubiquitously present in Antarctic ecosystems. The key to fungal success can be due to

the vast array of specialized molecules, which allowed their colonization in almost every habitat of our Planet. In Antarctic

marine environments, the fungal specific adaptions to low temperatures lead to the production of structurally novel enzymes

and secondary metabolites that provide competitive advantages over other microorganisms. The bioprospecting of Antarctic

fungi for new bioactive compounds and enzymes is important not only for elucidating their ecological role but also useful for

developing blue biotechnologies. 
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1. Background

The Antarctic ecosystem is one of the most hostile environments on Earth . Despite the harsh environmental conditions

(extremely low temperatures, prolonged periods of darkness, and high levels of ultraviolet radiations), Antarctica hosts a

variety of unique organisms, from penguins and other endemic birds to whales, seals, fish, and invertebrates inhabiting both

the land and the Southern Ocean . Although the number of species inhabiting the Antarctic mainland is low compared to

other terrestrial environments , the marine ecosystems host an unexpected high biodiversity and an ever-increasing number

of species is being reported every year . For example, the number of invertebrate marine Antarctic species has been

estimated to range from 17,000 to 20,000, only 8000 of which have been described to date . However, these estimates

are likely underrating the overall Antarctic marine diversity due to the low sampling effort and limited spatial coverage of the

studies conducted . Moreover, molecular techniques are now enabling the identification of cryptic and previously

unknown species, thus boosting our current ability in assessing Antarctic biodiversity .

Many factors can promote the high biodiversity in the Southern Ocean, including high environmental heterogeneity, isolation,

and low human impact . Indeed, coastal habitats in Antarctica are characterized by a wide spatial heterogeneity caused by

high variability in nutrient dynamics, light availability, and extensive seascape variations due to ice formation and melting

which determine major changes in thermohaline conditions, biological productivity, and sedimentation processes. Moreover,

Antarctica’s geographic and oceanographic isolation has allowed many new species to evolve in the absence of competition

from lower latitudes’ vicariants . Overall, these factors have contributed to shape Antarctic biodiversity in a unique way .

The diversity of large organisms inhabiting Antarctic ecosystems has received a larger attention than the diversity of microbial

assemblages, although the microbial component represents an important fraction of the whole biomass and plays pivotal roles

in biogeochemical cycles and marine food web functioning . There is also evidence that microbial diversity

represents a major reservoir of novel taxa, biochemical pathways, genes and compounds with biotechnological applications

.
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2. Fungal Diversity and Ecology in Antarctic Marine Environments

Fungi are widely distributed in marine Antarctic ecosystem, and their occurrence has been recorded in seawater and

sediments as well as associated with macroalgae and invertebrates . Marine fungi are supposed to contribute to population

dynamics, C and nutrient cycles in the oceans , and yet only a limited number of studies have investigated fungal diversity

and ecology of Antarctic marine fungi. These studies mainly focused on the identification of fungi and yeasts isolated from

waters, sediments, animals, and/or macroalgae (Figure 1). So far, most of the information has been acquired through culture-

dependent approaches on samples collected from the Shetland Islands, leaving most coastal and offshore habitats

unexplored.

Figure 1. Locations of the fungi identified from different Antarctic marine substrates: animals (orange circle), sediments

(yellow circle), macroalgae (green circle), and water (blue circle) based on culture dependent approaches or identified through

metagenomic analysis: animals (purple cross) and sediments (pink cross) (for detailed elucidation on the samples where

fungal taxa were isolated, and coordinates see Table S1).

2.1. Fungal Diversity

2.1.1. Fungi in Antarctic Marine Environment

In the last years, culture-dependent and molecular techniques have allowed us to describe a large number of fungal taxa in

seawater . Likewise, fungi have been identified in several polar environments . To date, only a few studies have

successfully identified filamentous fungi and yeasts in both coastal and offshore Antarctic waters . These studies,

employing culture-dependent methods, have been able to isolate a number of fungal genera belonging to the

orders Eurotiales, Hypocreales, Chaetothyriales, and Kriegeriales. In particular, Antarctic waters seem to exclusively host the

genera Exophiala, Graphium, Simplicillium, Purpureocillium, and Akanthomyces. These genera are known to include

parasites, pathogens, and likely saprotrophs, which may be involved in complex interactions within the water column .

However, other genera found in Antarctic waters such as Penicillium, Metschnikowia, Rhodotorula, and Glaciozyma have also

been found elsewhere in Antarctica (Figure 2). Within the water column, fungi can have significant effects on primary
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production dynamics and carbon fluxes within the marine food webs, by acting as saprotrophs and interacting with marine

phytoplankton .

Figure 2. Network diagram displaying the records of Antarctic fungal taxa belonging to different genera identified through

culture dependent approaches or metagenomic analyses in the four most commonly marine matrices (water, sediments,

animals, macroalgae). The size of the white nodes is proportional to the number of records in the studies in which the genus

has been found, while the size of coloured nodes is proportional to the overall number of genera retrieved.

Despite the increasing number of investigations carried out worldwide, to date, fungal diversity in Antarctic sediments has

been explored in a relatively limited number of studies, which mainly focused on the diversity of culturable fungal species 

. Recently, for the first time, molecular tools have been employed to investigate

the fungal diversity in Antarctic marine sediments and allowed the identification of a large number of fungal taxa although

much of the fungal diversity in Antarctic marine sediments still remains unknown .

Antarctic marine sediments have been shown to host a plethora of fungal taxa. For example, the

genera Pseudocercosporella, Toxicocladosporium, Trichoderma, Humicola, Paraconiothyrium,

Phaeoacremonium, and Phenoliferia have been documented exclusively in marine sediments and to be potentially involved in

the degradation of organic matter. Nonetheless, fungal diversity in marine sediments also include many other genera found in

other Antarctic habitats, such as Penicillium, Metschnikowia, Rhodotorula, Cladosporium and Glaciozyma (Figure 2). The

genus Pseudogymnoascus genus found in Antarctic sediments has been also recorded in other cold environments including
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polar regions and glaciers , and the genus Phaeosphaeria, whose members include plant pathogens, has been

also found in association with the Antarctic macroalgae Adenocystis utricularis .

2.1.2. Fungi Associated with Antarctic Macroalgae and Animals

Most of the research on Antarctic fungi focused on the assemblages associated with benthic macroalgae of the South

Shetland Islands (Antarctic Peninsula) . In particular, the macroalgae Adenocystis utricularis, Desmarestia

anceps and Palmaria decipiens host a rich fungal diversity, including genera

like Pseudogymnoascus, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Cryptococcus, Leucosporidium, Metschnikowia,

and Rhodotorula. Some of the species belonging to these genera appear to be endemic of Antarctica (i.e., Antarctomyces

pellizariae, Antarctomyces psychrotrophicus, Cryptococcus victoriae, Cryptococcus adeliensis, Metschnikowia australis,

Pseudogymnoascus pannorum, Mortierella antarctica), while others appear rather ubiquitously distributed

(i.e., Penicillium sp., Aureobasidium sp. and Rhodotorula sp.) . Despite this, fungi associated with macroalgae are

apparently unique since several genera have never been found in any other marine sample (Figure 2). This rich and diverse

fungal assemblages can have an important ecological role since they may produce enzymes with the potential to degrade

algal detritus and may be involved in organic matter cycling and energy transfer within the marine food web .

Analogously to what has been reported for macroalgae, fungi have been isolated also from marine animals, with which they

can interact as pathogens, parasites, or symbionts . Nevertheless, the nature and the strength of the

relationships between the host and the associated fungi have yet to be fully understood . Fungal diversity has been

investigated in a variety of Antarctic organisms such as sponges, annelids, crustaceans, molluscs, and echinoderms collected

in the South Shetland Islands (Figure 1), mainly through culture-dependent approaches . Although culture-

based studies allowed isolating and investigating a variety of fungal taxa, molecular tools have allowed the identification of a

larger fraction of the fungal diversity provided. In particular, such molecular methods provided new information about the

fungal diversity associated with the Antarctic Krill, Euphausia superba , and the marine sponges Leucetta

antarctica and Myxilla sp. . Several other fungal taxa, including members of the orders Saccharomycetales and Eurotiales,

and of the families Saccharomycetaceae and Aspergillaceae, have been identified. In particular, the most represented taxa

included ubiquitous genera such as Rhodotorula, Penicillium, Metschnikowia, Aspergillus, as well as 23 different exclusive

genera such as Wickerhamomyces, Geotrichum, Letendraea, and Bullera (Figure 2). Among them, Wickerhamomyces spp.

has particular characteristics: It can in fact grow under extreme environmental stressful conditions, such as low and high pH,

high osmotic pressure, absence of oxygen, and also shows antimycotic activity . Despite further studies being needed to

better understand the ecological significance of fungal–host interactions, there is evidence that these fungi can be involved in

defensive mechanisms by producing cytotoxic, antimycotic, and antibiotic molecules, which could increase the animal’s

wellbeing . For instance, fungi associated with the Antarctic krill can be involved in the defense mechanisms of the host

against pathogenic bacteria . Nevertheless, a number of fungal pathogens (i.e., Rhodotorula, Debaryomyces) have been

isolated from marine organisms which have the ability to compromise host health and fitness, but their possible detrimental

effects on marine fauna have not yet been estimated.

2.2. Contribution of Fungi to Ecological Processes in Antarctic Marine Ecosystems

While on terrestrial ecosystems the role of fungi is largely recognized, their ecological role in Antarctic marine ecosystems has

yet to be understood. In the last decade, several studies highlighted that fungi are widely distributed in marine environments,

from coastal waters  to the deep-sea surface and subsurface sediments , extreme habitats such as

hypersaline anoxic basins , cold seeps , hydrothermal vents , and oil reservoirs . Polar environments
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are also characterized by a considerably high number of fungal taxa , which can be involved in organic matter

degradation and nutrient cycling, as well as in intimate relationships with a variety of organisms .

In Antarctic marine waters, owing to their unique enzymatic capabilities and metabolic versatility , fungi can be

important components for the biogeochemical processes and the functioning of the food webs . As saprotrophs, some

fungi may utilize phytoplankton-derived detritus contributing to organic matter fluxes , while others can interact with

planktonic microorganisms influencing ecological dynamics and food webs . The same Authors have provided a

theoretical framework to describe how aquatic fungi interact with their environment, introducing the concept “mycoflux” to refer

to the interactions between pelagic fungi and other microbes and their effects on the carbon pump . Previously, Kagami et

al. (2014) introduced the concept “mycoloop” to indicate the parasitic interaction between fungi and other planktonic

components, suggesting that parasitic fungi can facilitate energy transfer from phytoplankton to zooplankton . This

concept is also supported by recent metabarcoding and metagenomic studies carried out in different aquatic environments 

, which revealed a high diversity of parasitic (or facultative parasitic) zoosporic fungi associated with phytoplankton

and zooplankton . Overall, these findings suggest that fungal parasites can be important in

influencing the aquatic food webs as other planktonic parasites .

Even in Antarctic benthic ecosystems, fungi can have an important role in C cycling and nutrient regeneration processes.

Benthic fungi, acting as decomposers of organic matter can be involved in the degradation of recalcitrant organic compounds,

which otherwise accumulate in marine sediments , and may mediate C and energy transfer to higher trophic levels

. The association of fungi with microalgal  and macroalgal detritus can improve the nutritional value of

organic matter by lowering the carbon:nitrogen:phosphorus ratio . Moreover, fungi in Antarctic benthic ecosystems are

likely involved in ecological interactions with other eukaryotes, similarly to what observed in other extreme marine

environments acting as pathogens and parasites .

In Antarctic benthic coastal ecosystems, an important relationship between fungi and macroalgae has been reported .

Macroalgae are ecosystem engineers that contribute to primary production in cold and temperate coastal marine

environments . Macroalgae represent the second biggest reservoir of fungal diversity after sponges , and the

relationship between the host and its fungal assemblage encompasses mutualism, parasitism, and saprophytism .

In this relationship, fungi can provide important advantages for the growth, defence, development, and nutrition of the algal

host . However, several fungi can also act as pathogens, compromising the host’s health and its ecological

functions .

Fungi have also been documented in association with Antarctic benthic marine animals , but so far, the nature and the

mechanisms of these relationships remain mostly unknown. To date, only one study based on a functional analysis of fungi

associated with sponges highlighted that fungi can have an important role in the degradation of the organic matter,

contributing to nutrient cycling and in turn influencing the carbon fixation pathways of prokaryotes and other micro-eukaryotes

within the microbial assemblages .

Paradoxically, the biotechnological focus of the Antarctic marine fungi has contributed to accumulate more information on their

potential industrial applications than on their quantitative relevance and role in biodiversity and functioning of Antarctic marine

ecosystems. Only one study, indeed, has so far addressed the ecological role of fungi in Antarctic marine habitats . This

knowledge gap highlights the importance to increase studies based on molecular and biochemical tools to better comprehend

fungal diversity and ecology and to elucidate the nature and strength of the relationships between fungi and their hosts

especially in extreme environments of the Earth, such as the Antarctic ecosystems.
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3. Biotechnological Potential of Fungi Inhabiting Marine Antarctic
Environments

The extreme conditions of Antarctic marine environments have forced microorganisms to evolve peculiar metabolic pathways

as well as adaptive mechanisms, which allow them to thrive in cold ecosystems . Psychrophilic and psychrotrophic fungi

hold outstanding biological features arising from the harsh environmental conditions with which they must cope . For

these reasons, they are considered treasure of unique enzymes and bioactive molecules with an exceptional application

potential . Therefore, Antarctic fungi can greatly contribute to the discovery of new compounds of marine

origin to be exploited in the industrial “white” and bio-pharmaceutical “red” biotechnology .

3.1. Antarctic Marine Fungi: Promising Candidates for Bioprospecting

With the increasing demand for novel antimicrobial and chemotherapeutic drugs, the discovery of biologically active

molecules to improve human health is one of the most important challenges for mankind . There is a general

consensus that natural products offer extraordinary advantages over chemical molecules, and this makes marine

microorganisms an astonishing potential source of new drugs . Marine extremophilic microorganisms,

including fungi, can also represent a huge reservoir of bioactive molecules that have recently triggered interest in

bioprospecting research because of their promising therapeutical properties . In this

regard, marine fungi isolated from polar environments reported their ability to synthesize metabolites with unique structures

and a wide range of biological activities, compared to mesophilic fungi, highlighting that psychrophilic fungi can be a new

resource for several applications in biotechnology . However, the search for natural bioactive products has

been focused so far on a very small number of fungi isolated from Antarctic marine sediments, seawater and few organisms

such as sponges and macroalgae .

Crude extracts of fungal strains have been isolated from fresh thalli of Antarctic macroalgal species and tested for their

antibiotic, antifungal, antiviral, and antiparasitic activity . Among these, extracts of two Penicillium species associated to the

endemic macroalgae Palmaria decipiens and Monostroma hariotii contained compounds with high and selective antifungal

and trypanocidal activities . In addition, extracts of Pseudogymnoascus species, Guehomyces

pullulans, and Metschnikowia australis showed high antifungal activity against Candida albicans, Candida krusei,

and Cladosporium sphaerospermum, whereas the extract of Penicillium steckii greatly inhibited BHK-21 cell line expressing

the yellow fever virus . Moreover, Geomyces species associated with Antarctic marine sponges, have been suggested as a

source of several promising antimicrobial and antitumoral compounds .

Interestingly, extracts of Pseudogymnoascus 5A-1C315IIII, isolated from marine sediments of Admiralty Bay (South Shetland

Islands, Antarctica), can inhibit different phytopathogenic Xanthomonas species . Another survey conducted on marine

sediments collected at Deception Island (South Shetland Islands, Antarctica) led to the isolation of Pseudogymnoascus specie

and Simplicillium lamellicola, which showed high and selective antifungal activity against Paracoccidioides brasiliensis .

Despite the considerable number of crude fungal extracts, only a few bioactive compounds have been actually tested so far

(Table 1). Most of the research on the bioactive compounds carried out in Antarctic environments mainly focus on a

few Penicillium strains, leaving most of the actual fungal biodiversity largely unexplored. The bioprospection of psychrophilic

and psychrotolerant polar Penicillium strains have resulted in the collection of many promising bioactive molecules with a

complex and peculiar structure and a broad range of biological activities, highlighting their outstanding potential . For

instance, eremophilane-type sesquiterpene isolated from Penicillium sp. PR19N-1, showed potent inhibitory activity against
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A549 tumor cells with IC50 value of 5.2 μM . In a recent study, neuchromenin, extracted from Penicillium glabrum SF-

7123, has shown great anti-inflammatory effects inactivating the NF-κB and p38 MAPK pathways in BV2 and RAW264.7 cells

.

Table 1. Bioactive molecules isolated from Antarctic marine fungi. Available chemical structures of the bioactive compounds

have been downloaded from .

Fungal Taxa Product Bioactivity Source Ref.

Penicillium
citrinum OUCMDZ4136

2,4-Dihydroxy-3,5,6-
trimethylbenzoic acid;
Citreorosein; Pinselin;

Citrinin; Dihydrocitrinone;
Pennicitrinone A;
Quinolactacin A1

Cytotoxic activities
against MCF-7, A549,

K562 cell lines

Antarctic krill Euphasia
superba

Penicillium
citreonigrum SP-6

Diketopiperazine, phenols
Inhibitory activity

against HCT116 cancer
cell line

Marine sediment, Great Wall
Station

Penicillium
crustosum HDN153086

Diketopiperazine
Cytotoxic activities

against K562 cell line
Marine sediment, Pridz Bay

Penicillium
crustosum PRB-2

Penilactone A

NF-KB inhibitory
activities of HCT-8, Bel-
7402, BGC-823, A549
and A2780 tumor cell

lines

Deep-sea sediment, Prydz
Bay

Penicillium glabrum SF-
7123

Citromycetin derivative,
neuchromenin; myxotrichin

C, deoxyfunicone;

Anti-inflammatory;
tyrosine phosphatase

1B inhibition
Marine sediment, Ross Sea

Penicillium
granulatum MCCC

3A00475
Spirograterpene A

Antiallergic effect on
immunoglobulin E

(IgE)-mediated rat mast
RBL-2H3 cells

Deep-sea sediment, Prydz
Bay

Penicillium sp. PR19N-1

Chlorinated eremophilane
sesquiterpenes,
eremofortine C,

eremophilane-type
sesquiterpenes,

eremophilane-type lactam

Cytotoxic activity
against HL-60 and

A549 cancer cell lines

Deep-sea sediment, Prydz
Bay

Penicillium sp. S-1–18
Butanolide A,

guignarderemophilane F,
xylarenone A

Butanolide: inhibitory
activity against tyrosine

phosphatase 1B;
xylarenone A: antitumor

activity against HeLa
and HepG2 cells and

growth-inhibitory effects
against pathogenic

microbes

Sea-bed sediment
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Fungal Taxa Product Bioactivity Source Ref.

Penicillium sp. UFMGCB
6034 and UFMGCB

6120
Aromatic compounds

Antifungal and
trypanocidal activities

Macroalgae: Palmaria
decipiens and Monostroma

hariotii

Pseudogymnoascus sp.
Pseudogymnoascin A, B,

C, 3-nitroasterric acid;
Geomycins B, C

Antibacterial and
antifungal activities

Sponge
genus Hymeniacidon

Trichoderma asperellum Asperelines A-F, peptaibols Not assayed
Marine sediment, Penguin

Island

The fungus Penicillium crustosum HDN153086, isolated from Antarctic sediment from Prydz Bay, can synthesize a new

diketopiperazine with moderate cytotoxic activity against K652 cell lines . Interestingly, seven bioactive compounds

extracted from Penicillium citrinum OUCMDZ4136, associated with the Antarctic krill Euphausia superba, showed moderate to

strong cytotoxicity against A549, K562, and MCF-7 cell lines . Conversely, Pseudogymnoascus, Trichoderma,

Aspergillus, and other fungal genera isolated from macro-organisms living in Antarctic environments, have not received as

much attention as the Penicillium genus. In fact, to date, only a few studies investigated the properties of bioactive molecules

extracted from these isolated genera and tested their bioactivity . For instance, different compounds have been

extracted from Pseudogymnoascus; however, only two bioactive molecules (Geomycins B, C) from a sediment sample

showed antifungal and antimicrobial activities .

3.2. Antarctic Fungi as Novel Source of Cold-Active Enzymes

Over the last 20 years, the interest in cold-adapted microorganisms as a source of new enzymes for industrial processes has

intensely grown . Nowadays, a considerable number of industrial processes and products take advantage of

microbial enzymes . Nevertheless, studies prospecting and characterizing enzymes have mainly focused on

prokaryotes , while there is little information on enzymes from psychrophilic or psychrotolerant eukaryotes inhabiting

Antarctic systems .

Despite the increasing demand for new biocatalysts, very few enzymes are currently isolated from extreme environments, the

so-called “extremozymes” . Cold extremozymes display a greater versatility and adaptability with respect to their non-

extreme counterparts that can be advantageous for modern industries . These enzymes are an optimal alternative to their

mesophilic equivalents thanks to their higher stability under various physicochemical conditions (i.e., pH, temperature, salinity)

and their advantage to reduce costs and energy consumption . Indeed, the use of these enzymes

represents an eco-friendly method compared to the chemical procedures employed in many industrial processes, allowing to

avoid the use of organic solvents and other hazardous compounds that can be seriously harmful to the environment .

Nevertheless, only some of these potentially useful enzymes have been successfully introduced in the market so far, and their

use is spreading rather slowly . This is mainly due to several steps including chemical characterization, condition

optimization, and process validation that need to be passed for commercializing novel biocatalysts 

Antarctic environments are a relatively new frontier for the isolation of cold-active enzymes. These molecules have distinct

features that meet the need of green industry applications . In this view, psychrophilic and psychrotolerant

fungi are specialized in producing extracellular and intracellular cold active-enzymes , which they use to live in

harsh conditions to degrade molecules and for the uptake of nutrients . Recently, these cold-adapted

enzymes have attracted growing interest because of their potential benefits in several industrial fields . The main

[56]

[162]

[163]

[46]

[164]

[51]

[73]

[46][162][163][164]

[163]

[165][166][167]

[168][169]

[170][171]

[157][172][173]

[174]

[175]

[176][177][178][179][180]

[181]

[182]

[183]

[157][172][184][185]

[20][184][186]

[132][165][187][188][189]

[170][180][190]



Antarctic Marine Fungi | Encyclopedia.pub

https://encyclopedia.pub/entry/10296 9/29

characteristics of fungal extremozymes are the high activity at low temperatures and thermolability, which have been manly

gained the attention for being applied as detergent additives (e.g., lipases) for eco-friendly cold-water washing and for food,

biofuel, and textile processing . Among them, cold-adapted hydrolases (EC 3.x, proteases, lipases, cellulases,

glycosidases) can be employed and useful in a variety of biotechnological processes (i.e., food, beverage, cleaning agents,

textiles, biofuels, and pulp and paper; see Table 2). This class of enzymes is extremely important since it covers over 90% of

the total industrial enzymes market .

Table 2. Examples of extremophilic fungi as a source of cold-adapted enzymes utilized in industrial applications. The fungal

taxa reported are isolated from Antarctic marine environments: seawater, marine sediments, and organisms.

[179][180]

[191][192]

Enzyme Reaction Fungi Source of (Isolate) Sample Applications/Potential
Uses Ref.

Carragenase
(EC 3.2.1.83)

Hydrolysis of 1,4-β-
linkages between

galactose 4-sulfate
and 3,6-anhydro-

galactose to produce
kappa-carrageenans

Pseudogymnoascus sp. UFMGCB 10054 Macroalga: Iridaea cordata,

Biomedical field, textile
industry, bioethanol

production, and
detergent additive

Cellulase
(EC 3.2.1.4)

Cellulose hydrolysis
into glucose

Cystofilobasidium infirmominiatum 071209-E8-C1-
liblev; Metschnikowia australis, Rhodotorula

glacialis; Candida
spencermartinsiae, Leucosporidiella
creatinivora, Leucosporidium scottii

Marine sponge: Tedania; marine sediments;
seawater

Food industry, animal
feed, beer and wine,

textile and laundry, pulp
and paper industry,
agriculture, biofuel,

pharmaceutical
industries, and waste

management

Chitinase
(EC 3.2.1.14)

Cleavage of
glycosidic linkages in

chitin and
chitodextrins
generating

chitooligosaccharides

Lecanicillium muscarium CCFEE-
5003; Glaciozyma antarctica PI12

Shrimp wastes; seawater

Cosmetic,
pharmaceutic fields,

fermentation research,
and biomedicine

Endo-
β-1,3(4)-

glucanase
(EC 3.2.1.6)

Endohydrolysis of
(1→3)- or (1→4)-
linkages in β-D-

glucans

Glaciozyma antarctica PI12 Seawater

Brewing and animal,
feed-stuff industry,

biofuel production, and
pharmaceuticals

Esterase
(EC 3.1.1.1)

Hydrolysis of short
acyl-chain soluble

esters

Cryptococcus victoriae, Metschnikowia
australis, Rhodotorula glacialis, Leucosporidium
scottii, Leucosporidiella creatinivora; Glaciozyma

antarctica

Marine sediments; seawater, sea ice

Paper bleaching,
bioremediation,

degradation, and
removal of xenobiotics
and toxic compounds

Invertase
(EC 3.2.1.26)

Hydrolysis of the
terminal non-
reducing β-

fructofuranoside
residue in sucrose,

raffinose and related

Glaciozyma antarctica 17
(formerly Leucosporidium antarcticum)

Seawater Beverage,
confectionary, bakery,

invert sugar, high
fructose syrup, artificial
honey, calf feed, food

for honeybees

[59]

[35]

[70]

[35]

[193]

[194]

[195]

[196]

[197]

[197]

[198]

[199]

[35]

[200]

[28]
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Enzyme Reaction Fungi Source of (Isolate) Sample Applications/Potential
Uses Ref.

β-D-
fructofuranosides

Laccase
(EC 1.10.3.2)

Oxidation of phenolic
compound like lignin

Cadophora malorum A2B, Cadophora
malorum AS2A, Cadophora luteo-olivacea P1

Marine sediments

Biosensors, microfuel
and bioelectrocatalysis,

food, pharmaceutic,
cosmetic, pulp and

paper, textile industries,
and bioremediation

Lignin
peroxidase

(EC
1.11.1.14)

Oxidative breakdown
of lignin

Cadophora malorum M7, Cadophora sp. OB-4B Marine sediments

Pulp and paper,
cosmetics (treatment of
hyperpigmentation, and
skin-lightening through

melanin oxidation),
textile, bioremediation
(degradation of azo,

heterocyclic, reactive,
and polymeric dyes,

xenobiotic, and
pesticides), and

bioethanol production

Lipase
(EC 3.1.1.3)

Hydrolysis of long-
chain triacylglycerol
substances with the

formation of an
alcohol and a

carboxylic acid

Leucosporidium scottii L117, Metschnikowia sp.
CRM1589; Mrakia blollopis SK-

4; Cystofilobasidium infirmominiatum 071209-E8-
C1-IIa-lev and isolate 131209-E2A-C1-II-

lev; Metschnikowia australis 131209-E3-C1-
(GPY)-lev and isolate 131209-E2A-C4-II-
lev; Rhodotorula pinicola 071209-E4-C9-
lev; Candida zeylanoides, Cryptococcus

victoriae, Leucosporidiella
creatinivora, Leucosporidium scottii, Candida

sake, Candida spencermartinsiae

Marine sediments; Algal mat in sediment;
marine

sponges: Tedania, Hymeniacidon, Dendrilla;
Seawater

Food, beverage,
detergent, biofuel
production, animal

feed, textiles, leather,
paper processing, and

cosmetic industry

L-
asparaginase
(EC 3.5.1.1)

Degradation of
asparagine into
ammonia and

aspartate

Cosmospora sp 0B4B, Cosmospora sp
0B1B, Cosmospora sp 0B2,

Geomyces sp. S2B
Marine sediments

Food industry and
medical applications as

anti-cancer,
antimicrobial, infectious
diseases, autoimmune

diseases

Pectinase
(EC 3.2.1.15)

Hydrolysis of
polysaccharides to

produce pectate and
other galacturonans

Geomyces sp. strain F09-T3-
2, Pseudogymnoascus sp., Cladosporium sp. F09-

T12-1, Cryptococcus victoriae, Leucosporidiella
muscorum, Metschnikowia australis, Rhodotorula

glacialis; Leucosporidiella
creatinivora, Leucosporidium scottii

Marine sponges; marine sediments;
Seawater

Food and textile
industry, coffee and tea

fermentation, wine
processing, oil

extraction, vegetable
and fruit processing

industry for juice
clarification, color, and

yield enhancer.
Applications in paper

and pulp making,
recycling of
wastepaper,

[201]

[201]

[35]

[37]

[38]

[202]

[203]

[204]

[201]

[35]

[72]

[205]
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Tausonia pullulans 17-1 isolated from Antarctic marine sediments can produce cold-active β-galactosidases, which can be a

tool for hydrolyzing the lactose present in milk and milk derivatives at low temperatures in the milk-processing industry,

allowing intolerant people to consume lactose-free foods and beverages .

Psychrophilic fungi isolated from Antarctic marine organisms are promising sources of cold-active xylanases, which have

interesting applications in the food industry for bread-making as well as in agricultural industry and biofuel production 

. For instance, the fungus Cladosporium sp. isolated from a marine sponge displayed high xylanase activity at a

lower temperature than the mesophilic fungus Penicillium purpurogenum MYA-30, used as a control . In addition,

the Penicillium species isolated from different Antarctic marine organisms (i.e., sea stars, molluscs, macroalgae) were able to

produce more than 10 U mL  of xylanase molecules after seven days of cultivation at 20.0 °C .

Microbial lipases are important enzymes employed in a variety of applications in the dairy, bakery, oil, meat and fish

processing, and beverage industries, for enhancing the food quality, as well as for the detergent and cosmetic industry 

. It is forecasted to reach a market size of 590.2 USD Million by 2023, with an annual growth rate of 6.8% from 2018 .

For example, Lipoclean  marketed by Novozymes is a cold-active lipase that is suitable as a detergent additive for its activity

at ≃20 °C, high stability in the presence of other enzymes, at alkaline pH and also resistance to oxidizing and chelating

agents . An interesting lipase activity was reported in some yeasts belonging to Cryptococcus, Leucosporidium,

and Metschnikowia genera, which were isolated from Antarctic marine samples . In particular, the highest activity (0.88 U

mL ) was observed in Metschnikowia sp. CRM 1589 isolated from marine sediments and Salpa sp. when cultured at 15 °C

. At the same temperature Cryptococcus laurentii L59, Cryptococcus adeliensis L121, and Leucosporidium scottii L117

showed an enzyme production between 0.1 and 0.23 U mL  after six days of incubation . Generally, yeasts belonging to

genera Candida, Yarrowia, and Saccharomyces can produce lipases . In fact, Candida antarctica isolated from sediments

of Lake Vanda in Antarctica (a lake permanently covered by ice) can produce two forms of distinct lipases (Lipase A and B),

whose production has been patented in 2005 with different industrial and environmental applications .

Assays using Tween 80 as substrate for testing esterase activity testing identified Cryptococcus, Metschnikowia,

Rhodotorula, Leucosporidium, and Leucosporidiella marine genera as cold-active esterase producers . Hashim et

al. (2018) discovered a new cold-active esterase-like protein with putative dienelactone hydrolase (GaDlh) activity produced

by the psychrophilic yeast Glaciozyma antarctica isolated from sea ice near the Casey Research Station . This pioneering

study on the bioprospection of cold-active enzymes performing the isolation, heterologous expression, and biochemical

characterization of recombinant GaDlh highlighted interesting cold-adapted features in the predicted protein structure at a

temperature of 10 °C and pH 8.0 . Overall, esterase enzymes are exploited in fine chemicals production and

pharmaceutical industries for improving the production of optically pure compounds, such as ibuprofen, ketoprofen, and

naproxen .

Since the beginning of the new millennium, very few studies have addressed the potential of Antarctic marine fungi as

protease producers . Proteases account for 60% of the total enzyme market and it is amongst the most precious

commercial enzymes for the wide uses in different kind of industries (i.e., food, pharmacology, detergent) . One of

the first studies on microbial Antarctic proteases was carried out on Leucosporidium antarcticum 171, which can produce a

novel extracellular serine protease, lap2 with an optimal temperature as low as 25 °C, high catalytic efficiency in the range 0–

25 °C . Afterward, halotolerant extracellular protease produced by Rhodotorula mucilaginosa L7 was characterized with

optimal catalytic activity at 50 °C and pH 5.0, after a selection of protease positive strains isolated from marine organisms 

. Recently, Pseudogymnoascus sp. CRM1533, isolated from Antarctic marine sediments, showed a protease activity of

Enzyme Reaction Fungi Source of (Isolate) Sample Applications/Potential
Uses Ref.

pretreatment of pectic
wastewaters, and

retting of plant fibers

Phytase
(EC 3.1.3.26)

Hydrolysis of phytate
to produce

phosphorylated myo-
inositol derivatives

Rhodotorula mucilaginosa JMUY14 Deep-sea sediments

Food and feed industry,
pharmaceutical use as

neuro protective
agents, anti-
inflammatory,

antioxidant and anti-
cancer agents

Protease
(EC 3.4)

Cleavage of peptide
bonds

Rhodotorula
mucilaginosa L7; Pseudogymnoascus sp.

CRM1533, Leucosporidiella
muscorum; Leucosporidiella sp. 131209-E2A-C3-
II-lev, Leucosporidiella creatinivora 071209-E8-

C4-II-lev; Rhodotorula glacialis; Leucosporidiella
creatinivora, Leucosporidium scottii

Marine macroalgae; marine sediments;
marine sponges: Tedania, Hymeniacidon;

Seawater

Food, feed,
pharmacology

(anticancer and
antihemolytic activity)

cosmetic (keratin-
based preparation)
industries, cleaning

processes (e. g.
detergent additive),
waste management

Protease
(Subtilase)
(EC 3.4.21)

Cleavage of peptide
bonds

Glaciozyma antarctica 17
(formerly Leucosporidium antarcticum)

Sub-glacial waters (depth of 200 m)
Food and beverage

industries

Transglutami-
nase

(EC 2.3.2.13)

Acyl transfer reaction
between gamma-

carboxyamide groups
of glutamine residues

in proteins and
various primary

amines

Penicillium chrysogenum Marine macroalga Gigartinas kosttbergii

Food, pharmaceutical,
leather, textile,

biotechnology industry,
biomedical research

Xylanase
(EC 3.2.1.8)

Hydrolysis of the
main chain of xylan
to oligosaccharides,

which in turn are
degraded to xylose

Cladosporium sp.; Penicillium sp.
E2B Penicillium sp. N5, Penicillium sp. E2-1

Marine sponge; marine sediments

Food (bread making),
feed, paper and pulp
industries, and also
used to increase the
sugar recovery from

agricultural residues for
biofuel production

α-amylase
(EC 3.2.1.1)

Cleavage of α-1,4-
glycosidic linkages

within starch
molecules, which
generate smaller

polymers of glucose
units

Glaciozyma antarctica PII12
(formerly Leucosporidium

antarcticum); Cystofilobasidium
infirmominiatum 071209-E8-C1-IIa-lev, 131209-
E2A-C1-II-lev, 131209-E2A-C5-II-lev and isolate
071209-E8-C1-IIb-lev; Metschnikowia australis

071209-E8-C3-II-lev and isolate 071209-E8-C1-II-
lev; Leucosporidiella sp. 131209-E2A-C3-II-lev

Seawater; marine
sponges: Tedania, Hymeniacidon

Pharmaceutical and
chemical industry;

employed as additives
in processed food, in
detergents for cold
washing, in waste-
water treatment, in

bioremediation in cold
climates, and in

molecular biology
protocols

[206]

[35]

[37]

[38]

[207]

[208]

[209]

[210]

[211]

[201]

[212]

[213]

[70]

[197]

[214]

[216][217]

[201][213]

[218][219][220]

[213]

−1 [201]

[221]

[222] [223]

®

[224][225]

[37]

−1

[37]

−1 [44]

[226]

[227][228][229]

[35][203][230]

[200]

[200]

[231]

[232]

[232][233][234]

[209]

[44]

[207]
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6.21 U mL , even though further studies are needed to characterize the functional potential of this enzyme . The

genera Metschnikowia, Cystofilobasidium, and Leucosporidiella, associated with Antarctic marine sponges, displayed

extracellular amylase between 4 and 20 °C, whereas only Leucosporidiella also showed protease activity .

Finally, different fungal genera such as Penicillium, Cladosporium, Geomyces, and Pseudogymnoascus isolated from

Antarctic macroalgae and sponges showed carrageenolytic and agarolytic activities which can be useful in processes

involving the extraction of the algal biomass for the production of bioethanol . Among the tested strains, Geomyces sp.

strain F09-T3-2 displayed also high activity pectinase: 121 U/mg after 5 days at 30 °C .

Overall, these findings indicate that the Antarctic marine ecosystems host promising fungal assemblages that display a wide

array of unique and novel enzymes. These enzymes offer new horizons for a broad range of biotechnological applications and

have great potential to reduce resource and energy consumption, thus promoting eco-sustainability. Obtaining further genetic

and functional information on extremophilic fungi inhabiting Antarctic marine ecosystems, coupled with the development of

specific bioinformatic pipelines for bioprospecting, are of fundamental importance for the identification of new fungal enzymes

and molecules useful for enhancing the growth and competitiveness of the blue biotechnologies.

3.3. Emerging Bioprospecting Methods: Pitfalls and Future Perspectives

Isolation techniques usually employed for characterizing extremophilic fungi typically foster isolation of selected fungal taxa

(e.g., faster-growing generalists, mesophilic strains), thus hampering our ability of bioprospection of natural molecules

produced by the currently unculturable fungi . Indeed, there is evidence that cultivability is a significant bottle-neck

for the discovery of natural products from extremophilic marine fungi . The implementation and development of

methodologies aimed at the isolation of extremophilic fungi are urgently needed to fill this gap . Novel cultivation methods

as well as culture-independent approaches, can help to overcome current limitations in our understanding of the fungal

biodiversity in extreme environments and in the discovery of new enzymes and molecules with biotechnological potential .

Indeed, culture-independent techniques coupled with genomics-based approaches are becoming valuable and fast tools to

analyse the functional potential of fungal secondary metabolites useful for biotechnological applications .

Metagenomics, metatranscriptomics, and metaproteomics, as well as single-cell genomics, followed by heterologous

expression of selected genes of potential interest, represent promising tools to shed new light on the possible biotechnological

exploitation of still-uncultured Antarctic fungi . Finally, the bioinformatics mining of the still poorly described but

rich genetic biodiversity of Antarctic fungi will certainly enhance the rate of discovery of bioactive molecules potentially useful

for biotechnological purposes .
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