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Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell

lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes

including development, homeostasis, autophagy, and innate and adaptive immune responses and their

dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of

conserved sequence motifs called Bcl-2 homology (BH) motifs, as well as a transmembrane region, which form the

interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the

earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses

have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they

frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis

initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions,

deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis.

Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are

emerging from evolutionarily earlier organisms.

apoptosis  Bcl-2  evolution  mechanism  structure analysis

1. Introduction

Apoptosis or programmed death of cells has played a significant role in metazoan evolution and prioritizes the

organism over individual cells . One form of apoptosis, intrinsic or mitochondrial regulated apoptosis, is initiated

by a range of intra- and extracellular stimuli to regulate developmental and homeostatic processes . The genes

most closely associated with intrinsic apoptosis are the B-cell lymphoma 2 (Bcl-2) family and have been identified

in the basal clades of metazoans, including Porifera (sponges), Cnidaria (anemones, corals, jellyfish), and

Placozoa . In mammals, these genes regulate the integrity of mitochondria where they either initiate the release

of apoptogenic factors or prevent this process from occurring (Figure 1). The threshold for cell fate is mediated by

antagonism between prosurvival and proapoptotic members of the Bcl-2 family  and this fundamental interaction

is conserved from sponges  to man . Evolutionary gene losses have led to simplification of this process in some

organisms, such as insects and nematodes (Figure 1b). Viruses have also acquired Bcl-2 genes to facilitate

replication and counter infected cells’ ability to orchestrate intrinsic apoptosis as part of antiviral defense

mechanisms . The molecular basis of the interaction between prosurvival and proapoptotic proteins relies on their

conserved sequences and structures .
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Figure 1.  Mechanisms of Bcl-2 regulated apoptosis. Simplified apoptosis schemes showing the role of Bcl-2

proteins in apoptosis initiation differ between mammals (a) and nematodes (b). The Bcl-2 family members are

indicated for M. musculus. Nematodes have a simplified activation of apoptosis where the BH3-only protein EGL–1

binds the sole prosurvival protein in the C. elegans genome CED-9. This event releases the caspase activating

protein CED–4 to initiate the caspase cascade. In mammalian apoptosis, the BH3-only group of proteins

antagonize the prosurvival Bcl-2 proteins releasing Bax, Bak, or Bok to oligomerize and form pores in mitochondria

causing mitochondrial outer membrane permeabilization (MOMP). Cytochrome c  release from the mitochondrion

triggers the mammalian equivalent of CED-4, APAF-1, to oligomerize and initiate the activation of downstream

caspases.

Bcl-2 proteins (Table 1) are identified by the presence of up to four conserved linear sequence motifs or domains

comprising about 20 residues and known as Bcl-2 Homology (BH) motifs (Figure 2) .[8][10]
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Figure 2.  Sequence-structure analysis of Bcl-2 family members from sponges to man. (a) Structure-based

sequence alignment of metazoan and viral Bcl-2 family members. Structurally equivalent residues are aligned. In

(a), sequence–structure alignment shows prosurvival and proapoptotic Bcl-2 proteins share key sequence features.

Sequences aligned: H. sapiens Bcl-x ; G. cydonium BHP2; C. elegans CED-9; Mus musculus Bax; Myxoma virus

M11L; Vaccinia virus N1L. Sequence–structure alignment was performed using Dali  and the secondary

structure is indicated by the colored bars. The extent of the Bcl-2 homology (BH) motifs and transmembrane region

(TM) is indicated by bars above the sequence and the helices below the sequences. (b) Table of sequence

identities and similarities for the sequences in (a) given as percentage sequence identity/sequence similarity in

each entry. Notably, the viral Bcl-2 proteins have little recognizable shared sequence identity with mammalian Bcl-2

proteins. (c) Profiles of BH and TM regions from Bax sequences representing bilaterians (Lepisosteus oculatis,

Strongylocentrotus purpuratus,  Ciona intestinalis), cnidarians (H. vulgaris,  Acropora digitifera), placozoa (T.

adhaerens), and porifera (A. queenslandica). The height of each stack represents the conservation and the residue

frequencies are represented by their height as determined by the program Skylign . These indicate that the BH4

motif is a relatively weak and poorly conserved motif when compared to the BH1–BH3 motifs. Uniprot sequence

and PDB IDs, hsBcl-x : Q07817, 1R2D; gcBHP2: Q967D2, 5TWA; ceCED-9: P41958, 1OHU; mmBax: Q07813,

5W62; Myxoma virus M11L: Q77PA8, 2JBX; Vaccinia virus N1L: P21054, 2I39.
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Table 1. Summary of Bcl-2-related proteins and their activities.

Name(s) Species Functions References

Bcl-2 H. sapiens Prosurvival

Bcl-w H. sapiens Prosurvival

Bcl-x H. sapiens Prosurvival

Mcl-1 H. sapiens Prosurvival

Bfl-1/A1 H. sapiens Prosurvival

Bcl-b H. sapiens Prosurvival

Boo/Diva M. musculus Prosurvival

NRZ D. rerio Prosurvival

Bak H. sapiens Proapoptotic

Bax H. sapiens Proapoptotic

Bok H. sapiens Proapoptotic

Bad H. sapiens Proapoptotic

Bid H. sapiens Proapoptotic

Bik H. sapiens Proapoptotic

Bim H. sapiens Proapoptotic

Bmf H. sapiens Proapoptotic

Hrk H. sapiens Proapoptotic

Noxa H. sapiens Proapoptotic

Puma H. sapiens Proapoptotic

Beclin H. sapiens Proautophagic

Bcl-wav D. rerio Proapoptotic

Buffy D. melanogaster Proapoptotic

DeBcl D. melanogaster Prosurvival

BHRF1 Epstein–Barr virus Prosurvival
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Name(s) Species Functions References

KsBcl-2 Kaposi Sarcoma herpesvirus Prosurvival

E1B19K Human adenovirus Prosurvival

M11 mγ68 herpesvirus Prosurvival

A179L African swine fever virus Prosurvival

F1L Vaccina virus, variola virus Prosurvival

DPV022 Deer poxvirus Prosurvival

M11L Myxomavirus Prosurvival

FPV039 Fowl poxvirus Prosurvival

CNP058 Canary poxvirus Prosurvival

SPPV14 Sheep poxvirus Prosurvival

 TANV16L Tanapoxvirus Prosurvival

ORFV125 Orf virus Prosurvival

GIV66 Grouper iridovirus Prosurvival

N1 Vaccinia virus Prosurvival, NF-κb

A46 Vaccinia virus NF-κb

A49 Vaccinia virus NF-κb

A52 Vaccinia virus NF-κb

B14 Vaccinia virus NF-κb

K7 Vaccinia virus NF-κb, IFN signaling

LB-Bcl-2 L. baicalensis Prosurvival

LB-Bak-2 L. baicalensis Proapoptotic

BHP1 G. cydonium Prosurvival

BHP2 G. cydonium Prosurvival

trBcl-2L1 T. adherens Prosurvival

trBcl-2L2 T. adherens Prosurvival
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Name(s) Species Functions References

trBcl-2L3/trBax T. adherens Proapoptotic

trBcl-2L4/trBak T. adherens Proapoptotic

Hy-Bcl-2-4 H. vulgaris Proapoptotic

Hy-BH3-only-2 H. vulgaris Proapoptotic

Hy-Bak1 H. vulgaris Proapoptotic

Hy-Bax H. vulgaris Proapoptotic

EGL-1 C. elegans Proapoptotic

CED-9 C. elegans Prosurvival

vMIA Cytomegalovirus Prosurvival

The Bcl-2 proteins fold to form a distinct helical bundle structure where the core of the α–helical bundle is

composed of a central hydrophobic helix (helix α5) that forms a scaffold for packing up to eight α-helices (Figure

2 and Figure 3). In a feature maintained from sponges to man , the Bcl-2 fold brings the BH regions into close

proximity to assemble the canonical BH3-binding groove where an antagonist BH3 motif binds (Figure 3b,c). Whilst

this “in-groove” interaction mechanism appears to be the primary mode of interaction for Bcl-2-mediated control of

apoptosis, alternative modes have been proposed including a site spanning helices α1 and α6  and the BH4

motif . Furthermore, nonapoptotic roles including modulation of NF-κB signaling are also not mediated via an in-

groove mechanism . BH motifs are recognizable from the earliest metazoan Bcl-2 proteins but may be absent in

viral proteins. The sequence signatures of each of the four BH motifs (BH1–BH4) differ (Figure 2c) and are found in

the order from the N-terminus: BH4, BH3, BH1, BH2 (Figure 2a) and for prosurvival proteins are normally located

on the same exon while the gene structure for the proapoptotic proteins is more complex. The presence of a BH3

motif is a key feature of the proapoptotic proteins and required for their proapoptotic activity , whereas some

of the prosurvival proteins do not feature the BH3 motif. In addition to the presence of the BH motifs, many Bcl-2

proteins bear a C-terminal transmembrane (TM) region that is located on a separate exon. The TM region targets

these proteins to intracellular membranes including the nuclear envelope, mitochondrial inner and outer

membranes, Golgi apparatus, lysosomes, ER, and peroxisomes . However, it is Bcl-2 family action at the

mitochondrial outer membrane (MOM) that is the most central mechanistic feature for intrinsic apoptosis. Both the

gene structure and synteny of Bcl-2 proteins are well conserved across phyla .
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Figure 3. Evolutionary structure conservation in the Bcl-2 family and their complexes. Ribbon representation of the

3D structures of prosurvival and proapoptotic Bcl-2 family members and their complexes are shown. The helical

bundle Bcl-2 structure occurred early in evolution and changed little over evolutionary time scales. (a)  H.

sapiens  Bcl-x  (PDB 1R2D) with BH1–BH4 motifs colored in orange, green, cyan, and red as shown in the

sequence–structure alignment of Figure 2a. (b)  H. sapiens  Bcl–x   (PDB 1R2D) shown as grey surface with

canonical ligand-binding groove shaded in magenta, (c) BHP2 from the sponge G. cydonium Bcl-2, BHP2 (PDB

5TWA) magenta, LB–Bak sky blue. The canonical ionic interaction between the conserved Arg from prosurvival

Bcl-2 and conserved Asp from the BH3 motif of prodeath Bcl-2 as well as the four conserved hydrophobic residues

from the Bak BH3 motif are shown as sticks. (d) M. musculus Bax (PDB 5W62) yellow, (e) H. sapiens Bcl-b:Bim

complex (PDB 4B4S), (f)  C. elegans  CED-9: EGL-1 complex, CED-9 (navy) with EGL–1 (sand) in the binding

groove (PDB 1TY4). (g) Myxoma virus Bcl-2 M11L (PDB 2JBX) cyan, (h) Vaccinia virus N1L (PDB 2I39) salmon.

Monomeric N1 is shown in the same orientation as in (a), and the functionally relevant dimer is shown rotated by

90  around the vertical axis. In (a), the extent of the BH motifs is indicated as ribbon colored as in Figure 2a and

the helices α1–α8 are also indicated. The structures were aligned on human Bcl-x   and the orientation for all

structures is the same as that in (a). The N and C termini are indicated.
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Our current understanding of intrinsic apoptosis is mainly derived from investigations of mouse, human, nematode

(Caenorhabditis elegans), and fly (Drosophila melanogaster) apoptosis. These studies have shown the Bcl-2 family

consists of two phylogenetically distinct groups of proteins: those that share the Bcl-2 fold  that are either

prosurvival or proapoptotic and the proapoptotic intrinsically disordered ‘BH3-only’ proteins, that bear only the BH3

motif . The BH3-only proteins are upregulated in response to diverse apoptotic stimuli  and their principal role

is to antagonize the prosurvival proteins , but apoptosis also occurs in their absence . Notwithstanding the

conservation in the Bcl-2 family, there are substantial differences in Bcl-2-regulated apoptosis mechanisms. In

mammals, there are nine multimotif Bcl-2 paralogs (six prosurvival Bcl-2, Bcl-x , Bcl-w, Mcl-1, A1, Bcl-B, and three

proapoptotic Bax, Bak, and Bok) and eight BH3-only proteins (Bim, Bad, Bmf, Bid, Bik, Noxa, Puma, Hrk) (Table 1)

that regulate intrinsic apoptosis through a network of specific binding interactions that control the integrity of the

MOM  (Figure 1). A key step is Bax, Bak, or Bok oligomerization at the mitochondrial membrane that results in

formation of membrane pores releasing cytochrome c  to activate the caspase cascade. In contrast to mammals,

MOM permeabilization (MOMP) and cytochrome c do not play a role in initiation of apoptosis in ecdysozoans C.

elegans (Figure 1) or D. melanogaster   (Figure 1). Combined, these results indicate the interactions of the

Bcl-2 proteins have been maintained over the course of evolution.

The role of prosurvival Bcl-2 proteins is not limited to regulation of apoptosis; other functions have been proposed

in processes as divergent as autophagy, calcium homeostasis regulation, and metabolism . The most

well-understood process at a molecular level of these nonapoptotic roles is that of autophagy. Both Bcl-2 and Bcl-

x  are able to bind the autophagy regulator Beclin-1 via a mechanism closely mimicking the canonical in-groove

interaction with BH3-only proteins . Beclin-1 has significant differences from the BH3-only proteins. In

addition to being much longer (450 residues) than a typical BH3-only protein (54–198 residues for human BH3-only

proteins), Beclin-1 has its BH3-like motif located in an unstructured N-terminal region  with the BH3 motif

spread over the junction of two exons. In addition to its unstructured N-terminal region Beclin-1 bears a coiled coil

domain and a folded evolutionary conserved domain . The spread of the BH3 motif over two exons

differentiates Beclin-1 from the BH3-only proteins where apart from Bid the BH3 occurs in the second-to-last exon.

The molecular basis of Bcl-2 proteins in nonapoptotic functions remains to be delineated.

Dysfunctional apoptosis is one of the hallmarks of disease like cancer  and metazoans have coevolved with this

disease . While neoplasms in many vertebrates are well known , they have also been discovered in the

early metazoans H. vulgaris  , coral Acropora palmata  , and molluscs , and in the case of hydra, occur

as a result of dysregulation of apoptosis . While some cancers are unique to a species, others occur across

multiple species  and resistance to apoptosis is likely to be a central feature. There is strong interest in

developing a molecular understanding in Bcl-2 function, interactions, and structures  but currently there is only a

limited number of studies on early metazoan Bcl-2-regulated apoptosis . However, these initial studies

strongly suggest conservation of structures and mechanisms across metazoan history. Exactly how intrinsic

apoptosis is manifested at a molecular level varies according to the organism, but all mechanisms rely on loss of

prosurvival activity to initiate apoptosis. Consequently, there has been a drive to explore the interactions of this

family and elucidate the network of functions they regulate.

[95][98]

[10] [99]

[10] [100]

L

[8]

[8][45][101]

[102][103][104]

L

[52][105][106]

[107]

[108]

[109]

[110] [110]

[111] [112] [113]

[111]

[114]

[8]

[7][115]



Bcl-2 Family Evolutionary Conservation | Encyclopedia.pub

https://encyclopedia.pub/entry/11014 9/29

2. Virus-Encoded Bcl-2 Homologs

The importance of the Bcl-2 family in homeostatic regulation has been exploited by viruses with many viral

genomes containing a Bcl-2 protein, and in some instances, multiple Bcl-2 proteins . Sequence, structural, and

functional homologs of Bcl-2 are found in  Herpesviridae  as well as Nucleocytoplasmic Large DNA Viruses

(NCLDVs) such as  Asfarviridae  and  Iridoviridae  . Many of these virus-encoded Bcl-2 family members display

substantial differences with regards to their sequence (Figure 2a,b) and interaction profiles to their mammalian

proapoptotic Bcl-2 family counterparts as well as their overall structure, owing to the more rapid pace at which

these proteins have evolved as part of a host–pathogen interface . The first viral Bcl-2 homologs were

identified in adenovirus  and the γ-herpesvirus Epstein–Barr virus (EBV) . Adenoviral E1B19K was shown to

be a potent inhibitor of apoptosis and could be interchanged with Bcl-2 during cellular transformation . Whilst

the vast majority of virus-encoded apoptosis regulatory Bcl-2 proteins act by utilizing the canonical ligand-binding

groove to sequester proapoptotic Bcl-2 family members, it has become apparent that this is not the sole

mechanism utilized. In addition to binding proapoptotic proteins, viruses may target host prosurvival Bcl-2 proteins

through the BH3-binding groove in a manner similar to but not identical to a BH3 motif, and Hepatitis B virus X

protein was shown to engage the groove of Bcl-x  allowing viral replication to proceed .

2.1. Bcl-2 Homologs Encoded by Herpesviridae

Numerous Herpesviridae encode Bcl-2-like proteins such as BHRF1 from EBV, one of the earliest identified viral

Bcl-2 homologs. BHRF1 adopts the classical Bcl-2 fold and utilizes the canonical ligand-binding groove to engage

proapoptotic BH3 motif ligands . BHRF1 was shown to prolong survival of cells , which is linked to its

ability to engage proapoptotic Bcl-2 members Bim  and Bak . An unusual herpesviral Bcl-2 homolog is

found in murine γ–herpesvirus 68, M11 . M11 is a potent inhibitor of TNFα and Fas-induced apoptosis, and was

shown to bind multiple proapoptotic Bcl-2 proteins including Bim, Bak, and Bax . However, M11 also binds the

autophagy regulator Beclin-1, which bears a BH3-like motif, with nanomolar affinity (K  = 40 nM), which is bound

via the canonical ligand-binding groove . Indeed, functional studies suggest that autophagy may be the primary

cell death pathway targeted by M11 . Although the majority of herpesvirus-encoded Bcl-2 proteins target intrinsic

apoptosis, γ68-encoded M11 clearly shows that other cell death pathways such as autophagy can also be viable

targets. Indeed, M11 is not an exception, and adenoviral E1B19K was shown to be an autophagy inhibitor via

engagement of Beclin-1 , as was the asfarvirus African swine fever virus (ASFV) A179L (see below).

2.2. Poxvirus Bcl-2 Homologs

The  Poxviridae are a large superfamily of viruses amongst the NCLDVs comprising numerous families that are

characterized by their relatively large genomes (130–360 kb) that frequently encode functional and structural

homologs of Bcl-2 . Most notable for human disease among the pox viruses are Variola virus, the causative

agent of smallpox, and Vaccinia virus, which provides the basis for smallpox vaccine. Vaccinia virus (VACV) is the

prototypical member of the  Orthopoxviridae  and encodes for prosurvival F1L. VACV F1L is a potent inhibitor of

intrinsic apoptosis, but displays no detectable sequence identity with mammalian Bcl-2 . Nevertheless,

structural studies revealed that VACV F1L adopts a Bcl-2 fold, albeit with a previously not observed domain-
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swapped topology that rendered VACV F1L a constitutive dimer . This unusual topology is paired with a

remarkably restricted ligand-binding profile, with VACV F1L only engaging Bim, Bak, and Bax. Interestingly, similar

domain swapping was subsequently also observed during Bax and Bak oligomerization , suggesting that the

structural plasticity observed amongst the virus-encoded Bcl-2 proteins is also pivotal for the function of metazoan

family members. In the context of a live viral infection, F1L inhibits Bim to prevent premature host cell apoptosis

 and replaces Mcl-1 activity . An extended unstructured N-terminal section prior to the Bcl-2 fold  may

be involved in apoptosis regulation but results are conflicting . Despite being closely related to VACV

F1L, the Variola virus (VAR) F1L homolog does not bind Bim; instead it binds Bid, Bak, and Bax , and only

counters Bax-mediated apoptosis. The domain-swapped Bcl-2 topology is not restricted to the  Orthopoxviridae,

with deerpoxvirus-encoded DPV022  and orfvirus OFV125  also adopting this unusual fold . Amongst

the  Leoporipoxviridae, myxomavirus encodes for antiapoptotic M11L (Figure 3d), a potent inhibitor of intrinsic

apoptosis . Despite lacking detectable sequence identity to cellular Bcl-2 or Bcl-x , M11L adopts a Bcl-2 fold 

 (Figure 2a,b and Figure 3g,h) and sequesters Bax and Bak to prevent apoptosis , unlike VACV F1L which

operates via Bim neutralization . Other poxvirus-encoded vBcl-2 members include fowlpox FPV039  and

canarypox virus (CNPV058) , sheep poxvirus , tanapoxvirus  and orf virus ORFV125 . Outside

the  herpes  and  Poxviridae, ASFV encodes A179L , a Bcl-2 homolog that uses the canonical ligand-binding

groove to engage all major host proapoptotic Bcl-2 members  as well as Beclin-1 , thus acting as a dual

apoptosis/autophagy inhibitor . Amongst the Iridoviridae, grouper iridovirus (GIV) harbors prosurvival GIV66

 that only binds Bim , and forms a novel noncovalent dimeric Bcl-2 architecture which leads to an occluded

ligand-binding groove  and dimer dissociation upon Bim binding.

While numerous  Poxviridae  encode Bcl-2 homologs that inhibit apoptosis, it has become apparent that another

subset of poxviral Bcl-2 proteins exists that also modulate other functions. This group includes VACV N1 which, like

M11L, has little shared sequence identity with mammalian Bcl-2 proteins (Figure 2b) but is a structural homolog

(Figure 3g). N1 is a dual inhibitor of intrinsic apoptosis that adopts a dimeric Bcl-2 fold (Figure 3h)  where an

additional interaction site enables modulation of NF-κB signaling that is regulated independently of the canonical

Bcl-2 groove . Other VACV-encoded NF-κB modulatory Bcl-2 proteins include A46 , A49 , A52, B14 ,

and K7 . Despite targeting NF-κB signaling, substantial structural and mechanistic differences are evident

across this group of Bcl-2 proteins. Although A52 and B14 utilize helices α1 and α6 to form a similar interface 

as N1, the angle of orientation between the constituent monomers varies between the three proteins.

Intriguingly, while apoptosis inhibitory Bcl-2 members are found in  Herpes,  Pox,  Asfar, and  Iridoviridae, more

specialist functions are not widely found. Although several herpesviruses as well as ASFV harbor Bcl-2 homologs

with autophagy inhibitory activity, no poxvirus has been shown to inhibit autophagy via a Bcl-2 homolog.

Conversely, the NF-κB inhibitory activity found in poxvirus-encoded Bcl-2 homologs is not found outside

the  Poxviridae. Whether or not these differences are attributable to the unique and fundamentally different life

cycles and primary sites of infection remains to be established. These findings differentiate the viral Bcl-2 proteins

from those in metazoans but indicate the diversity of interactions possible with the Bcl-2 fold.

[56][127]

[128]

[127] [129] [130]

[130][131][132]

[133]

[58][57] [69]

[134]
L

[60]

[135] [60]

[127] [61][62]

[64] [65][1] [2] [68][69]

[136]

[54] [137]

[53][138]

[71] [70]

[70]

[73][139]

[94] [74][140] [76] [78]

[81]

[78]



Bcl-2 Family Evolutionary Conservation | Encyclopedia.pub

https://encyclopedia.pub/entry/11014 11/29

3. The Nonmammalian Bcl-2 Family

Of the four nonbilaterian basal clades of metazoans, Porifera, Placozoa, Cnidaria, and Ctenophora, multiple

orthologous and paralogous Bcl-2 family members have been discovered in the genomes of organisms from

Porifera, Placozoa and Cnidaria, but have not yet been identified in ctenophores and are absent altogether in some

ecdysozoans . In contrast to higher organisms and viruses, experimental evidence for the function of the Bcl-

2 family in basal metazoans is relatively sparse. Recent sequence, structural, and biochemical evidence gained

from poriferan , placozoan , and cnidarian  Bcl-2 family members are elucidating the mechanisms of

apoptosis in basal metazoans. Furthermore, these results strongly suggest the molecular basis of intrinsic

apoptosis determined by the structures, interactions, and intracellular localization of Bcl-2 proteins was

foundational in metazoan evolution.

Sponges are currently considered the sister group to metazoans  and multiple Bcl-2 family proteins have

been discovered in members of this phylum; for example, the genome of  Amphimedon queenslandica  contains

seven potential Bcl-2 proteins , though little is known of their function. The demosponge  Lubormirskia

baicalensis harbors putative prosurvival and proapoptotic Bcl-2 proteins LB-Bcl-2 and LB-Bak-2 , and two Bcl-2

proteins, BHP1 and BHP2, have been identified in the sponge Geodium cydonium  . Structural and biochemical

studies on BHP2 showed that a BH3 peptide derived from the BH3 region of L. baicalensis Bak-2 bound in the

groove of BHP2 and many of the molecular features elucidated in mammalian Bcl-2 interactions were maintained

. Though the topology of BHP2 closely resembles those of other Bcl-2 proteins (Figure 2  and  Figure 3), a

structure–phylogenetic analysis showed there were relatively subtle differences suggesting BHP2 has unique

binding features when compared to mammalian and viral Bcl-2 proteins . These findings not only indicate the

structure conservation but the evolutionary conservation of the intermolecular interactions of the BH3 motif:Bcl-2-

in-groove interaction between prosurvival and proapoptotic Bcl-2 proteins from sponges to man.

The placozoan Trichoplax adhaerens has four putative Bcl-2 fold proteins in its genome  including two putative

proapoptotic proteins, Bax (trBcl-2L3 or trBax) and Bak (trBcl-2L4 or trBak), and two prosurvival proteins, trBcl-2L1

and trBcl-2L2 . TrBax is inhibited by human Bcl-2, suggesting the BH3-in-groove interaction is conserved. The

putative role of trBak in T. adhaerens  is somewhat different from that in humans, where it antagonizes the

prosurvival activity of trBcl-2L1 and trBcl-2L2 rather than inducing cytochrome c loss from mitochondria, and thus it

has been hypothesized that trBak effectively adopts the role of a BH3-only protein in mammals; however, further

investigation is required to establish this proposal as no detailed interaction studies were undertaken. As for the

case of G. cydonium, the underlying conservation of the Bcl-2:Bax interaction was demonstrated by the inhibition of

trBax by human prosurvival proteins.

The BH3-only proteins play a key role in mammalian apoptosis where they antagonize the action of prosurvival

proteins (Figure 1), but their presence has not been detected in the genomes of Porifera or Placozoa. However,

candidates for BH3-only proteins have been detected in the cnidarian H. vulgaris   in addition to Bcl-2 fold

sharing prosurvival proapoptotic Bcl-2 proteins. Potential BH3-only proteins have been identified in  H.

vulgaris using a yeast two-hybrid screen . The relatively short sequence of the BH3-only motif with essentially
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only a highly conserved Leu and absolutely conserved Asp four residues downstream has made it difficult to

identify bona fide BH3-only sequences by sequence alone, making it necessary for biochemical verification 

. In addition to the four proposed BH3-only proteins in H. vulgaris, there are nine putative Bcl-2 family members

including two Bak-like and seven Bcl-2 like sequences . Structural and biochemical analysis revealed that

Hy-Bcl-2-4 acts as a prosurvival Bcl-2 protein, and together with the proapoptotic Hy-BH3-only-2, Hy-Bak1 and Hy-

Bax forms a core intrinsic apoptosis machinery that mirrors those in mammalian systems . Although further

studies are required to establish the exact functional relationships for these proteins, the findings of Lasi et al. 

point to a complex signaling network for the Bcl-2 proteins even in the earliest of metazoans.

The genetic  and molecular and structural  foundations of Bcl-2-regulated apoptosis were established in

the ecdysozoan C. elegans (Figure 1, Figure 2a and Figure 3f). Since these discoveries, the basis of prosurvival,

proapoptotic, and BH3-only protein interaction has been verified in other organisms. The genomes of the

lophotrochozoans  Schmidtea mediterranea,  S. japonicum,  and  S. mansoni  bear multiple Bcl-2-like proteins

including BH3-only components . Investigation of apoptosis in platyhelminths (S. mediterranea and Dugesia

dorotocephala) identified Bak and Bcl-2 orthologs and experimental data mitochondrial cytochrome  c  release is

associated with MOMP and caspase activation . Binding between the Bcl-2 proteins and BH3-only proteins

in  S. japonicum  was established using immunoprecipitation experiments . Mutational, structural, and

biochemical studies defined the binding mode as similar to other Bcl-2:BH3 interactions and cytochrome c release

on treatment with a BH3 motif peptide . Combined, these studies on lophotrochozoans indicate that, in contrast

to ecdysozoans, a tripartite mechanism exists with prosurvival, proapoptotic, and BH3-only proteins triggering

MOMP and cytochrome  c  release to initiate intrinsic apoptosis in these organisms. The conclusion from these

studies is that intrinsic apoptosis signaling in the protostomes has been modified by gene loss in some organisms

but the underlying tripartite mechanism leading to MOMP is preserved in others and the MOM interaction remains

central.

Experiments on the cytosolic extracts from the echinoderms  Strongylocentrotus purpuratus  (purple sea urchin)

and  Dendraster excentricus  (sand dollar) indicate caspase activation could be induced with cytochrome  c,

suggesting mitochondrial-regulated apoptosis occurs in the deuterostomes in a similar way to that in the

protostomes . However, others have suggested that apoptosis activation in echinoderms may not involve

cytochrome  c  release from mitochondria as cytochrome  c  is not apparently necessary for Apaf-1-activated

apoptosis in the starfish  Asterina pectinifera  . In the nonmammalian vertebrates, the molecular basis of

apoptosis is probably best defined in zebrafish,  Danio rerio, where all three groups of the tripartite Bcl-2 family

have been identified . D. rerio has an extensive network of Bcl-2 proteins, but as yet there are relatively few

details on the mechanism of action even in this well-studied model organism . Genome duplication events in

teleost fish  have given rise to many Bcl-2 paralogs in D. rerio  , but the molecular basis of apoptosis is likely

similar to that in mammals . Structural studies on D. rerio NRZ show the structure and mode of BH3 interaction

is near identical to other organisms . These studies establish Bcl-2 signaling in deuterostomes share many

aspects with those from the protostomes and establish the basis for intrinsic apoptosis in the bilaterians.
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4. The Role of Mitochondrial Membrane Interactions

The defining event of intrinsic apoptosis in mammals is release of cytochrome  c  from the mitochondrial

intermembrane space through supramolecular pores formed by Bax, Bak, or Bok oligomerization on the MOM 

(Figure 1). Crucial to this action is the presence of a TM anchor and most members of the Bcl-2 family bear tail

anchors, including BH3-only proteins,  necessary both for their localization at the MOM  and apoptotic activity

. TM anchor deletion mutants of Bax and Bak lose their apoptotic abilities , suggesting the MOM as an

activator of Bax/Bak . Similarly, deletion of the TM region of prosurvival Bcl-x  decreases its prosurvival activity

. The most striking feature of the TM regions is their poor sequence conservation . Figure 2c illustrates the

relatively weak conservation of the TM region compared to the BH motifs in Bax sequences. In mammalian

apoptosis, cofactors such as the β-barrel Voltage Dependent Anion Channel-2 (VDAC2) may be important in

Bax/Bak membrane recruitment , but this has not yet been demonstrated in basal metazoan apoptosis. While

most investigations have focused on apoptosis in the mouse or humans, MOM association has also been observed

for Bcl-2 proteins from placozoans, hydra, and viral proteins, indicating the fundamental nature of this activity to

Bcl-2 action.

The structures of the proapoptotic proteins Bax,  Bak,  and Bok  have an essentially identical core that

suggests a common mode of action; however, their subcellular localization and dynamics differ significantly .

The crystal structure of mouse Bax shows that the TM region is helical and packed in the equivalent site as

occupied by EGL-1-binding CED-9 (Figure 3d,f). Prior to apoptotic stimuli, Bax is largely cytosolic , with a

fraction being shuttled to the mitochondrion surface , but subsequent to apoptotic stimuli, Bax accumulates at

the MOM  via a process that is dependent on its TM residues . In contrast to Bax, Bak is constitutively

membrane-bound and Bok is only fractionally colocalized with mitochondria . The prosurvival protein Bcl-

x  translocates Bax from the MOM to the cytosol, and this process is dependent on the BH3-binding groove 

and TM region of Bcl-x   . Thus, the proapoptotic proteins have complex membrane interactions and dynamics

and emerging data supports a similar view in basal metazoans.

Experimental details on the localization and dynamics of Bcl-2 proteins are now emerging for the placozoan  T.

adhaerens, and a similar picture of complex dynamic behavior to mammalian Bcl-2 family proteins is emerging

. T. adhaerens Bcl-2 proteins are differentially partitioned between mitochondria, ER, and the cytosol, and the TM

region is necessary for its membrane localization . TrBcl2L1 is tightly associated with the MOM, while trBcl-2L2

(trMcl-1) and trBcl-2L4 (trBak) are cytosolic and only loosely associated with intracellular membranes  in a

manner that mirrors the mammalian Bcl-2 proteins. Mammalian prosurvival proteins like the proapoptotic proteins

are differentially partitioned between cytosol and membranes. For example, Bcl-2 is membrane integrated and Bcl-

x   partitioned between cytosol and membranes. Like its mammalian counterpart, Trichoplax Bax (Bcl-2L3)

translocates to the mitochondria and induces cytochrome c release . However, one caveat of these discoveries is

that they have been performed in heterologous systems using expression of Trichoplax proteins in mammalian

cells and have yet to be confirmed in homologous systems. The studies on T. adhaerens Bcl-2 proteins and their

membrane interactions point to the fundamental nature of membrane interactions in their mechanism of action.
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Although not all viral Bcl-2 proteins bear an obvious TM region, many do , and membrane interactions are

necessary for their prosurvival activity. This trend closely mirrors what has been observed for mammalian proteins

like Bcl-x . Similarly for the viral Bcl-2 protein F1L, association with mitochondria is necessary for its prosurvival

behavior , and M11L localizes at the mitochondria  and colocalizes with Bak at the MOM . ASFV A179L

localizes to mitochondria and ER . Although C-terminal anchoring of Bcl-2 proteins is often maintained, there

are exceptions; for example, vMIA targets the MOM through its N-terminal region . It appears likely that the

interaction of Bcl-2 proteins with membranes is fundamental to Bcl-2 function and has been conserved from the

earliest metazoans and maintained in viral Bcl-2 proteins.

While MOM localization of Bcl-2 proteins may be conserved, MOMP is not necessarily maintained as a mechanism

of activating apoptosis. Ecdysozoans have undergone extensive gene loss  and have fewer Bcl-2 genes and

mechanistic differences from mammalian apoptosis (Figure 1) . For example, the sole Bcl-2 protein CED-9 in

the nematode C. elegans is TM-anchored to mitochondria like its mammalian counterpart Bcl-2 and although they

have closely related structures (Figure 2  and  Figure 3) and bind BH3-only proteins in their respective binding

grooves, their role in apoptosis mechanisms is not identical . CED-9 binds and antagonizes the apical caspase

CED-4 and once released from its inhibition by the translationally upregulated BH3-only protein EGL-1 binding

CED-9, CED-4 activates the caspase CED-3 . In comparison, Bcl-2 is also localized to the MOM amongst

other intracellular membranes  and binds BH3-only proteins but it does not bind Apaf-1, the mammalian

caspase-activating protein corresponding to CED-4. Distinct from the nematode, the role of Bcl-2 proteins in the

fly  D. melanogaster  is less well understood . BH3-only proteins have not been found in the genome of  D.

melanogaster but two Bcl-2 proteins, Debcl and Buffy, have been recognized and it has been shown they interact

 and both localize to the MOM with Buffy additionally found at the ER . Thus, although the sequences,

structure, and membrane binding may all be conserved elements in the Bcl-2 family, there are key differences in

how they are manifested in the activation of caspases.

5. Conclusions

It is not clear how the Bcl-2 family arose; one hypothesis is that it occurred through horizontal gene transfer from a

symbiont , but multiple Bcl-2 genes occurred early in metazoan evolution. Even in the sponges, a phylum

considered to be the sister group of all metazoans , multiple Bcl-2 fold proteins have been identified in

genomes, such as that of A. queenslandica   where seven such proteins were recognized. In contrast to the

early appearance of Bcl-2 fold proteins, BH3-only proteins have not yet been identified in Porifera or Placozoa.

Ctenophores and some ecdysozoans  appear to have lost the genes required for Bcl-2-regulated apoptosis

altogether (Figure 4a). Emerging results from biophysical and biochemical measurements performed on the

nonmammalian Bcl-2 family including those from sponges , placozoans  and cnidarians   indicate that the

basic architecture of intrinsic apoptosis is maintained for these basal metazoans. Structural studies have shown

that the molecular details of interactions have been conserved from sponges to man  and viruses have

assimilated Bcl-2 proteins . A key difference between sponges, placozoans, and cnidarians is an apparent

absence of BH3-only proteins in sponges and placozoans. The essential role of the BH3-only proteins, at least in
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mammals, is to neutralize the prosurvival proteins to allow the MOM to activate the proapoptotic Bcl-2 proteins .

Based on these results, a hypothesis for a simple model for intrinsic apoptosis in the absence of BH3-ony proteins

could be envisaged as the prosurvival proteins keeping the proapoptotic proteins in check. Alternately, as recently

proposed, the Bak-like protein may partially fulfill the role of BH3-only proteins  (Figure 4b). The investigation of

the more evolutionary distant members of the Bcl-2 family has exposed the substantial complexity in Bcl-2-

mediated signaling at the foundation of metazoan evolution and underscores the pivotal role these proteins play in

biology. Functional and mechanistic studies to date have only just begun to unravel the role Bcl-2 has played

during the early stages of metazoan life, and future studies are likely to discover new twists to Bcl-2 signaling.

Figure 4. Bcl-2-like proteins in basal metazoan clades and potential apoptosis model. (a) Metazoan phylogenetic

relationships and the presence or absence of Bcl-2 proteins. The presence or absence of Bcl-2 family members is

indicated. (b) A simple model for intrinsic apoptosis in Porifera and Placozoa where BH3-only proteins have not

been identified. Experiments have yet to delineate the roles of MOMP and adaptor protein initiation of caspases in

their entirety.
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