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Thermosensitive liposomes (TSL) belong to the category of triggered nanoparticle drug delivery systems (DDS)

where a drug associated with the DDS is released in response to an external trigger. TSL are triggered by heat and

release the encapsulated drug when exposed to mild hyperthermia (HT), typically ~40–43 °C. TSL were first

described more than four decades ago.
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1. Introduction

Thermosensitive liposomes (TSL) belong to the category of triggered nanoparticle drug delivery systems (DDS)

where a drug associated with the DDS is released in response to an external trigger . TSL are triggered by

heat and release the encapsulated drug when exposed to mild hyperthermia (HT), typically ~40–43 °C. TSL were

first described more than four decades ago . Since then, numerous TSL formulations combined with various

drugs have been described, as summarized in prior reviews . TSL are most often administered

systemically, e.g., by intravenous infusion, and then circulate in the blood stream for an extended duration.

Combined with localized hyperthermia, TSL enable loco-regional drug delivery (Figure 1). This enables the

delivery of a large drug dose to a targeted tissue region (e.g., tumor) while reducing systemic toxicities. Therefore,

TSL are attractive as a therapeutic strategy in cancer patients where loco-regional drug delivery is beneficial, but

less useful in metastatic cancer patients that require systemic therapy. While TSL have been most widely

investigated for drug delivery in cancer therapy, additional potential clinical applications include the delivery of

antibiotics , the treatment of inflammatory diseases , and the treatment of blood clots .

TSL enable two different delivery approaches: extravascular triggered release, and intravascular triggered release

(Figure 2) . Extravascular triggered release requires the extravasation of the TSL, followed by HT-

triggered release of the encapsulated agent . This extravasation is based on TSL accumulation within the

tumor interstitium facilitated by enhanced permeability and retention (EPR) . Several papers

described the limitations of the EPR effect, such as high intra- and inter-tumor variability, and an apparent upper

delivery limit . Some reviews highlight the need for delivery strategies that do not rely on EPR .
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Figure 1. Localized drug delivery with thermosensitive liposomes (TSL). Following the administration of TSL-

encapsulated doxorubicin (Dox), a subcutaneous mouse tumor was heated by a surface heating probe to 43 °C.

Fluorescence imaging during hyperthermia visualizes the localized delivery of the fluorescent drug (Dox). Drug

delivery takes place as long as hyperthermia is applied, here visualized by a fluorescence increase over the 60 min

heating duration. Figure reproduced from  (published under Creative Commons CC BY license).

Figure 2. Extra- and Intra-vascular triggered release. (a) (1) Traditionally, nanoparticle DDS have been based on

passive tumor targeting due to enhanced permeability and retention (EPR), where drug is released following

extravasation of the DDS. (2) For TSL with intravascular triggered release, EPR is not relevant: TSL enter the

tumor microvasculature of the target region where the release trigger (i.e., hyperthermia) is present, and release

the contained drug within the vasculature. The released drug extravasates rapidly into tissue and is then taken up

by cancer cells. (b) Top graph: Concentration dynamics in plasma, interstitial, and intracellular compartments

during extravascular triggered release. TSL were allowed to accumulate for 24 h in the tumor based on EPR,

followed by hyperthermia triggered release. Bottom graph: Concentration dynamics during intravascular triggered

release. Hyperthermia (30 min) was applied immediately after TSL administration. Concentration increases in

plasma due to drug release. Released drug then extravasates into interstitium (extravascular extracellular space),

where it is taken up by cells. Figure 3a reproduced from  (published under CC BY 4.0 license). Figure 3b

reproduced from  (published under CC0 license).

Intravascular triggered release is a strategy where drug release occurs in the microvasculature while the TSL pass

through the heated tumor, and does not require the EPR effect (Figure 2a) . Many of the more recent
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TSL formulations are based on intravascular triggered release, and such TSL have demonstrated superior delivery

efficacy, with up to 25× higher drug delivery compared to unencapsulated drugs . Compared to non-triggered

nanoparticle drug delivery systems, TSL based on intravascular triggered delivery demonstrate superior tumor drug

uptake (Figure 3). In addition, the direct comparison of TSL with extra- versus intra-vascular triggered delivery

strongly suggests that the latter is superior  (Figure 2b).

Figure 3. Delivery efficacy of intravascular triggered TSL compared to other nanoparticle DDS. A prior review

compared the efficacy of 117 nanoparticle DDS studies published between 2005–2015 , and researchers

combined data from this prior research to include studies published between 2016–2022 based on the same

search algorithm 

. (a) Plot showing the delivery efficacy (%injected dose per gram tumor

(%ID/g tumor)) based on the combined data 

. Each marker represents a published

study, and dashed lines indicate the annual median for DDS with passive and active targeting. (b) The means of all

prior studies in each category between 2005–2022 are compared, suggesting superior delivery efficacy of

intravascular triggered TSL (* indicates statistical significance (p < 0.05)).

Tissue Transit Time

For TSL based on intravascular triggered release, the dynamics of blood flow through the tumor vasculature is of

primary relevance. Blood/plasma with TSL enter a tumor segment through a supplying artery, pass through tumor

capillaries, and exit the tumor segment through a draining vein. The average time that plasma spends within a

tumor segment is termed the ‘tissue transit time’ (TT) (compared to plasma, red blood cells move significantly

slower through capillaries, and thus remain for longer within the tumor segment ). The drug release from TSL,

and drug extraction by tumor tissue, can only occur during this tissue transit time. Figure 4 visualizes the transit

time between supplying artery and draining vein of a small mouse tumor segment. In human tumors, the mean

transit time through a tumor has been measured for various tumor types. This mean tumor transit time varies

widely, and is ~2 s for primary hepatocellular carcinoma , ~3 s for head and neck and prostate tumors ,

~11 s for renal cell carcinoma , ~25 s for metastases to the liver , and ~30 s for breast cancer .
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Furthermore, transit time and perfusion vary spatially within tumors such that transit time can be locally within a

tumor considerably higher or lower than these mean values that were averaged over the whole tumor.

Figure 4. Tumor plasma transit time. Tumor (green fluorescent labeled cancer cells) was imaged by intravital

fluorescence microscopy. A red fluorescent contrast agent was injected as bolus. The time at left upper corner of

each image indicates timing relative to plasma first entering the tumor segment; plasma exits the tumor segment

again within ~4 s (note: red blood cells move slower than plasma and remain longer in the tumor segment). In the

final image (right lower corner), the main supplying artery (MSA), and main draining vein (MDV) of the imaged

tumor segment are labeled. Figure reproduced with permission from .

As plasma with TSL enters capillary vessels within a heated tumor region, the TSL start releasing the drug and the

drug is then extracted by the tumor (Figure 5b,c). Therefore, the plasma drug concentration varies along the

vasculature as plasma flows between the supplying artery and draining vein of a tumor segment—in other words, a

concentration gradient develops along the tumor microvasculature between the supplying artery and draining vein.

Figure 5 illustrates schematically this microvascular concentration gradient along a representative capillary

connecting the supplying artery and the draining vein of a tumor segment. For free (unencapsulated) drug, plasma

drug concentration decreases as drug is extracted (Figure 5a). For TSL, drug is first released by hyperthermia,

and then the released (free) drug is extracted (Figure 5b,c). Ideally, TSL completely release the encapsulated drug

during the transit time to maximize tumor drug uptake—i.e., TSL that release their drug within seconds are

preferable (Figure 5b).
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Figure 5. Microvascular concentration gradient. Plasma flows within a representative capillary between the

supplying artery and draining vein of a tumor segment. Plasma concentration of unencapsulated/released drug

(blue bar), and TSL-encapsulated drug (black bar) are shown, with red arrows indicating tumor drug uptake (i.e.,

drug extraction). Three cases are presented: (a) Unencapsulated drug infusion into supplying artery, (b) TSL with

complete release during transit, and c) TSL with incomplete release during transit. In (b,c), drug is first released

from TSL, followed by tissue uptake. Note that all figures show first pass where no drug is yet present in the tissue

interstitium. Figure reproduced from  (published under CC BY 4.0 license).

2. Impact of TSL Properties on Drug Delivery

The methods for preparation and loading of various TSL formulations with different agents has been reviewed

extensively in prior reviews . Additionally, the factors and mechanisms that affect drug release

from TSL have been summarized in detail in earlier publications . Here, how TSL properties such as release

kinetics and plasma stability affect drug delivery is focused on. These properties depend both on the TSL

formulation and the drug. For example, the same formulation will have varying release kinetics depending on which

drug is encapsulated . In addition, the buffer used to measure release affects release kinetics , highlighting

the importance of selecting an appropriate buffer (e.g., plasma) (Figure 6d).

Figure 6. Measuring release kinetics of fast-release TSL formulations. (a) Millifluidic release assay schematics. A

TSL solution (TSL + buffer) is pumped through a capillary tube that has been heated to the desired temperature by
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a Peltier element. Once the TSL solution enters the heated region, TSL begin to release the fluorescent drug/dye,

resulting in a fluorescence gradient along the tube (upper graph). The Peltier temperature is measured by a

thermocouple, and a control algorithm regulates the power applied to the Peltier element to control temperature.

(b) Release of carboxyfluorescein (CF) from fast-releasing TSL (DPPC:MSPC:DSPE-PEG2000 = 85:10:5)

between 37 and 45 °C during the first 8 s. Release within seconds is required to take advantage of the intra-

vascular triggered release paradigm. (c) Release depends on the encapsulated compound, shown for four

compounds for the same TSL formulation. Release in (a–c) was measured using fetal bovine serum (FBS) as

buffer. (d) Release kinetics vary between buffers. CF release is shown for 4 buffers: phosphate buffered saline

(PBS), 10% bovine serum albumin (BSA) solution, fetal bovine serum (FBS), and human plasma. TSL formulation

used in (b–d) was identical. Figures reproduced with permission from .

2.1. TSL Release Kinetics

The early TSL formulations had comparably slow release (within minutes to hours) . In addition, heating to

>42 °C was required to achieve substantial release. This is disadvantageous since temperatures above 43 °C may

result in reduced blood flow  that would also reduce the inflow of TSL-encapsulated drug. The first fast-release

TSL formulations were published in the early 1990s, demonstrating substantial release within a few seconds after

heating to >41 °C . Such rapid release is required to take full advantage of the intravascular triggered

release paradigm, as discussed above. The first fast-release formulation with substantial release at lower

temperatures (40 °C) was presented around the year 2000 , and formed the basis for the first

commercial TSL formulation (ThermoDox®) that has been employed in several human clinical trials 

. Several additional fast-release TSL formulations encapsulating various agents have been presented

within the last two decades . Recent studies confirm that fast-release TSL that release within a few

seconds can deliver substantially higher drug amounts compared to slower releasing formulations .

However, for most of these TSL formulations, release kinetics is not known within the time scale relevant for

intravascular triggered release (e.g., within the first few seconds), owing to limitations of conventional methods

used for measuring the release kinetics.

The most widely used method for measuring TSL release kinetics employs a buffer pre-heated to the desired

temperature, where a small volume of TSL is added, typically under stirring .

Release is quantified usually using spectrophotometry, since optical properties (e.g., fluorescence) change when

the drug is released from TSL. Due to the time required for mixing of the TSL with the buffer, the first reported time

points are typically between 8–20 s. This time is substantially longer than many typical tumor transit times, making

these measurements of limited value.

There have been two methods presented to measure TSL release kinetics at short (second) time scales. The first

method employed a small-diameter tube within which TSL solution was passed through heated water for a specific

time, and the released drug was quantified in the sample exiting the tube . An advantage of this method is that

various quantification methods can be employed on these samples. In a second method, a glass capillary tube was

heated by a Peltier element, and release was quantified by measuring fluorescence along the tube by either
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microscopic or macroscopic fluorescence imaging (Figure 6a) . This method provides data at high temporal

resolution not possible with other methods (Figure 6b–d), but is limited to fluorescent agents. In both methods, it is

important to select thin-walled tubes and to validate sufficiently rapid heating of the solution passing though the

tube to target temperature .

To compare the release kinetics of TSL formulations, a recent study suggested using a characteristic release time

based on a linear approximation of the TSL release kinetics . As noted earlier, TSL only spend a few seconds

within a tumor (=transit time), and for most TSL, the release kinetics within those first seconds can be adequately

represented by a linear approximation (Figure 7). Ideally, this release time would be smaller than the transit time to

maximize release and tissue drug uptake (Figure 5). The amount of drug released during tumor transit (Figure 5)

can be estimated by the ratio of transit time to release time (can be found in original context). A recent study

demonstrated that TSL with rapid release (i.e., short release time) can deliver substantially more drug to tissue

than TSL with slow release (Figure 8) . Table 1 summarizes the release times of published fast-release TSL

formulations. In most cases, the exact release times could not be determined owing to limitations of methods used

to quantify the release kinetics, as described above.

Figure 7. TSL release time. Release of two TSL formulations encapsulating a fluorescent drug analog

(carboxyfluorescein) with slow (sTSL) and fast (fTSL) release is plotted, based on data from a prior study . The

dotted lines indicate a linear approximation of the release kinetics. TSL only spend a few seconds within the heated

tumor (see black double arrow indicating ‘Transit Time’). Thus, in most cases, a linear approximation adequately

represents release within those few seconds that TSL spend within the tumor vessels. Based on this linear

approximation, a characteristic ‘release time’ is determined (indicated by red and blue double-arrows at the top)

that enables the comparison of different TSL formulations. This release time was 8.2 s for fTSL, and 63.0 s for

sTSL. The fraction of drug released during transit can be estimated by the ratio of transit time to release time (can

be found in original context).
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Figure 8. TSL delivery kinetics. (a) Drug concentration in plasma and interstitium (extracellular-extravascular

space, EES) was determined from intravital microscopy data. Hyperthermia (42 °C) for 10 min was applied

following the administration of either slow- (sTSL) or fast-release TSL (fTSL) encapsulating a fluorescent drug

analog (carboxyfluorescein) (see Figure 7 for release kinetics of sTSL and fTSL). Plasma concentration increases

during hyperthermia due to drug release. Released drug is then extracted by tissue, indicated by increasing

interstitial (EES) concentration. A plateau (peak) concentration is approached towards the end of hyperthermia.

This plateau concentration is substantially higher for fTSL compared to sTSL. Error bars indicate standard

deviation (n = 3 animals/group). (b) Computer simulation of drug delivery kinetics based on in vivo measured tumor

properties reproduces the delivery kinetics observed in (a). Error bars indicate computer model uncertainty due to

uncertainty of model parameters. Figures reproduced from  (published under CC BY 4.0 license).

Table 1. Fast-release TSL formulations. Release times (see Figure 7) were estimated if possible, or an upper limit

was provided (e.g., <20 s); in the latter cases, release at the first measured time point is shown in brackets. Buffer

used for release measurement is indicated, since buffer affects release kinetics .
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TSL Composition (Molar
Ratio) Drug

Release
Time

[Temp.]
Buffer

In Vivo Plasma
Half-Life
(Species)

Refs.

DPPC:MSPC:DSPE-PEG2000
(86:10:4)

Doxorubicin 3 s [40 °C]
human
plasma

0.96 h
(human);

1–2 h (rabbit);
4.8 h (pig)

DPPC:MSPC:DSPE-PEG2000
(85.3:9.7:5)

Doxorubicin 4 s [41 °C] PBS
0.93 h (mouse);

0.96 h (rat);
0.75 h (dog)

DPPC:DSPC:DSPE-PEG2000
(70:25:5)

Doxorubicin
~5–10 s
[42 °C]

FBS >1 h (mouse)
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TSL Composition (Molar
Ratio) Drug

Release
Time

[Temp.]
Buffer

In Vivo Plasma
Half-Life
(Species)

Refs.

DPPC:DSPE-
PEG2000:Ch:mELP

Doxorubicin
<5 s [41–

42 °C]

FBS +
culture
media

2.0 h (mouse)

DPPC:DSPC:DPPG1 (50:20:30) Doxorubicin

<20 s [42
°C]

(92.2%
release @

20 s)

HEPES
buffered
saline

1.4 h (rat)

DPPC:DSPC:DPPG2 (50:20:30) Doxorubicin

<20 s [42
°C]

(~75%
release @

20 s)

HEPES
buffered
saline

~1 h (pig); 1.6–
2.4 h (rat);

0.4–0.7 h (cat)

EYPC:Chol:Peg-
PE:poly(EOEOVE-OD4)

(50:45:4:2)
Doxorubicin

~1 min [43
°C]

HEPES
buffered
saline

-

DPPC:Brij78 Doxorubicin
~1 min [42

°C]
FBS 0.5 h (mouse)

DOPE:EPC:chol-pHPMAlac
(70:25:5)

Doxorubicin
~2 min [42

°C]

HEPES
buffered
saline

-

DPPC:DSPC:DSPE-PEG2000
(60:35:5)

Idarubicin
<1 s [42

°C]
FBS >1 h (mouse)

DPPC:DSPC:DSPE-PEG2000
(80:15:5)

Gemcitabine

<2 min [42
°C]

(90%
release @

2 min)

FBS ~2 h (mouse)

DPPC:MSPC:DSPE-PEG2000
(86:10:4)

Gemcitabine ~30–60 s
FBS:saline

(1:1)
-

DPPC:Brij78 Gemcitabine ~30–60 s
FBS:saline

(1:1)
~2 h (mouse)

DPPC:Brij78 Oxiplatin ~30–60 s
FBS:saline

(1:1)
~1 h (mouse)

DPPC:DSPC (90:10) Cisplatin
3–5 s [43

°C]
rat plasma ~1 h (mouse)

[150]

[151]

[151][152]

[153][154]

[155]

[156]

[157]

[158]

[105]

[143]

[34]

[34]

[34]

[125][126]

[159]



Impact of Thermosensitive Liposome Properties on Drug Delivery | Encyclopedia.pub

https://encyclopedia.pub/entry/40693 10/26

DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; MSPC:

1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine; DPPG: 1,2-dipalmitoyl- sn-glycero-3-phosphoglycerol; PE:

poly ethylene; PEG: polyethylene glycol; Ch: Cholesterol; EYPC: egg yolk phosphatidylcholine; EOEOVE: 2-(2-

ethoxy)ethoxyethyl vinyl ether; mELP: modified elastin-like polypeptide; Brij78: proprietary surfactant (main

component: eicosaethylene glycol octadecyl ether); pHPMAlac: 2-Hydroxypropyl methacrylamide mono/dilactate

polymers; PBS: phosphate buffered saline; FBS: fetal bovine serum; BSA: bovine serum albumin.

2.2. Plasma Stability

Plasma stability describes how long TSL-encapsulated drug remains in the systemic circulation after administration

and can be quantified by the initial plasma half-life of a TSL formulation. Similar to the TSL release kinetics, plasma

stability depends both on TSL formulation and encapsulated drug, but also varies with species (Table 1). During

hyperthermia, circulating TSL-encapsulated drug continuously enters the heated tissue volume, with subsequent

intravascular drug release (Figure 2 and Figure 5). The plasma concentration of TSL-encapsulated drug

represents the amount available for intravascular triggered release. Thus, the AUC (area under the concentration

vs. time curve) of the plasma concentration calculated during hyperthermia correlates with the total amount of TSL-

encapsulated drug subjected to hyperthermia . As a result, this AUC directly correlates with the amount of

drug released in the heated tumor (can be found in original context). This AUC also correlates with tumor drug

uptake, as initially demonstrated in a computer modeling study  and later confirmed by several experimental

studies (Figure 9) . A higher plasma stability would therefore increase this AUC, resulting in larger

amount of drug being released—assuming that the kinetics of TSL release is not different (e.g., increased plasma

stability of a TSL formulation may be disadvantageous if it is associated with slower release). Similarly, one

approach to enhance drug delivery is to adjust the timing of hyperthermia as to maximize the plasma AUC during

heating .

Figure 9. Plasma-AUC during hyperthermia correlates with tumor drug uptake. (a) AUC of plasma Dox

concentration was calculated during heating, for either 15 or 60 min hyperthermia (HT) as indicated by shaded

regions. (b) Plasma-AUC during HT correlated well with Dox fluorescence in the tumor region-of-interest measured

following HT (R  = 0.63). Tumors were exposed to hyperthermia (43 °C) for either 15 min (blue dots) or 60 min (red

dots). Data reproduced from  (published under CC BY 4.0 license).

Note however that such comparisons based on AUC are only appropriate for different studies with the same TSL

formulation, and the same or similar hyperthermia methods (i.e., with similar tumor temperature). The AUC

indicates the total amount of TSL-encapsulated drug that passes through the heated tissue during hyperthermia. If

TSL Composition (Molar
Ratio) Drug

Release
Time

[Temp.]
Buffer

In Vivo Plasma
Half-Life
(Species)

Refs.

DPPC:DPPG:MSPC:DSPE-
PEG2000

(57.7:28.9:9.6:3.8)
Cisplatin

<5 min [42
°C]

(90%
release @

5 min)

0.9% saline ~1.5 h (mouse)

DPPC:MSPC:DSPG:DSPE-
PEG2000 (82:8:10:4)

Epirubicin
~4 min

[41–43 °C]
PBS 0.2 h (rat)

DPPC:MSPC:DSPE-PEG2000
(86:10:4)

Alvespimycin

<30 s [42
°C]

(90%
release @

30 s)

BSA in PBS 0.2 h (mouse)
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two different heating devices with different temperature profiles and heating volumes are used, the amount of drug

released from TSL will differ. Similarly, if two different TSL formulations are used, the amount of drug released will

differ due to varying TSL release kinetics. Thus, even if the AUC is identical (=total amount of TSL-encapsulated

drug passing through heated tissue), the amount released from these two TSL formulations will vary, resulting in

different tumor drug uptake.

TSL plasma stability depends on several factors, and one major contributor is drug leakage from TSL at body

temperature (37 °C)—i.e., drug slowly leaks from TSL while in systemic circulation . Unfortunately, the release

rate at body temperature is usually tied to the release rate at hyperthermic temperatures—i.e., slow release at 37

°C and rapid release at hyperthermia represent conflicting requirements for TSL formulations.

The peak plasma concentration after administration of TSL-encapsulated drug (Figure 9a) naturally correlates with

the administered dose. Often, the administered dose is close to, or at the maximum tolerated dose (MTD) for that

particular TSL–drug formulation in the studied species. In rodents, the MTD relative to body weight is often

substantially higher compared to humans . This higher administered dose in rodents results in higher plasma

concentration (Figure 9a) and higher tumor drug uptake compared to large animals  and humans 

. This issue may be relevant when extrapolating results on tumor drug uptake and therapeutic response from

rodent studies to human patients.
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