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The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development

throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for

many human physiological processes, such as signaling pathways, gene expression, structure and function of

membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter

representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal

growth and differentiation through the modulation of the physical properties of neuronal membranes, signal

transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection

against neurodegenerative pathologies such as Alzheimer’s disease and Parkinson’s disease, which are

associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and

oxidative stress. 

docosahexaenoic acid  arachidonic acid  neuroprotection  neurodegeneration

1. Introduction

Over many years there has been growing interest about n-3 and n-6 long-chain polyunsaturated fatty acids (n-3

and n-6 LCPUFA), mainly related to their role in neural development and the prevention of neurodegenerative

diseases. Lipids correspond to 60% of the dry weight of the mammalian brain, mostly in the form of phospholipids

. N-3 and n-6 LCPUFA are required for proper brain growth and development, specifically docosahexaenoic

acid (C22:6n-3, DHA) and arachidonic acid (C20:4n-6, AA) . DHA and AA represent approximately 25% of the

total content of brain fatty acids  and are constituents of the lipids of cell membranes that form the gray matter

. DHA represent up to 90% of the total n-3 LCPUFA in the brain . This LCPUFA can be obtained from its

dietary precursor alpha-linolenic acid (C18:3n-3, ALA), which, after a complex process of enzymatic desaturation

and elongation, is converted to DHA, or can be obtained from preformed DHA of marine dietary sources . DHA is

mainly found in the phospholipids of synaptic terminal membranes, and the vast majority of DHA is incorporated

into the structure of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine . The structural

properties of DHA, such as its chain length and high unsaturation degree, give flexibility and fluidity to the neuronal

plasma membrane, thus facilitating the signal transduction process into these cells . These structural

properties have a pivotal role in neuronal growth, migration, synaptogenesis, and synaptic plasticity . In

advanced stages of life, a decrease in plasma DHA levels is positively correlated with normal brain aging in healthy

elderly individuals and also in patients diagnosed with neurogenerative diseases  such as Alzheimer’s

disease (AD) . It has also been observed that populations having a higher average dietary intake of DHA

show a lower risk of developing cognitive impairment or AD . Furthermore, a potential neuroprotective role of
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DHA in Parkinson’s disease (PD) through the increase in dopaminergic neurotransmission and the prevention of

neuronal death is also actually recognized . In this regard, the higher intake of n-3 LCPUFA (mostly DHA)

trough supplementation may be effective to improve the nutritional status of the fatty acid and may play a role in

maintaining brain health and in the prevention of brain aging symptoms .

AA is one of the most abundant n-6 LCPUFA in the brain and has a critical role in brain growth, being essential

during the first months of life . Ideally, during brain development, AA should be provided preformed in the diet

because the low activity of the enzymes (Δ-5 and Δ-6 desaturases) involved in its formation from its dietary

precursor linoleic acid (C18:2n-6, LA) results in a low conversion of LA to AA . This fatty acid participates in

many signaling pathways involved in cell division . It is also a direct precursor of adrenic acid (C22:4n-6, AdA), a

fatty acid necessary for neuronal development and enrichment of myelinic lipids . A potential protective role of

AA in neuronal aging through its participation in preserving the fluidity of the hippocampal cell membranes has

been described . However, opposite to this effect, a controversial role has been associated with AA in

neuroinflammation and the genesis of cellular damage due to the pro-inflammatory action of some of AA metabolic

derivatives . According with this background, the present review analyzes the neurological role of DHA and

AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in

the developing brain and in a context of age-related neurodegenerative disease prevention. Also, we discuss the

eventual neuroprotective role of n-3 and n-6 LCPUFA in AD and PD.

2. DHA and AA: Biosynthesis, Metabolism, and Dietary
Sources

ALA and LA are considered essential fatty acids because humans cannot synthesize them, so they must be

supplied by the diet . ALA is metabolized to eicosapentaenoic acid (C20:5 n-3, EPA) and subsequently to

DHA, while LA is the precursor of AA . ALA and LA are competitors in their respective metabolic pathways

because both fatty acids are substrates for the same desaturase and elongase enzymes. In the synthesis of n-3

and n-6 LCPUFA in addition to the substrates ALA and LA, the participation of a complex enzymatic process which

allows the desaturation and elongation of the 18 carbon atoms precursors (ALA and LA) is necessary . This

process occurs in microsomes and involves Δ-6 fatty acid desaturase 2 (FADS2), Δ-5 fatty acid desaturase 1

(FADS1), elongase 2 (ELOVL2) and elongase 5 (ELOVL5) enzymes . The latter enzyme having a higher affinity

for n-3 PUFA than for n-6 PUFA, favoring the transformation of ALA into DHA . This less affinity of LA than ALA

to desaturase and elongase enzymes has contributed to the recommendation of a 5:1 molar ratio for the dietary

intake of n-6:n-3 PUFA, because when the dietary contribution of both fatty acids is similar, the formation of DHA is

privileged compared to AA . An interesting aspect about LCPUFA synthesis is the existence of polymorphisms

in desaturase enzymes, which can influence both the ability to the synthesis of DHA or AA and the blood levels of

these fatty acids . For example, rs3834458 single nucleotide polymorphism in FADS2 may result in lower Δ-6

desaturase activity leading to higher ALA and lower DHA blood concentrations . The presence of these

polymorphisms can also influence lower levels of LCPUFA in breast milk, especially DHA, which could have impact

on brain development . The existence of polymorphisms has been associated with increased risk of
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developing insulin resistance, type 2 diabetes, cardiovascular disease, and non-alcoholic fatty liver disease

(NAFLD), among other pathologies .

ALA is found in higher amounts in vegetable oils such as chia and flaxseed oil and in lower amounts in canola and

soybean oils  The principal dietary sources of preformed DHA are fatty fish or blue fish, such as salmon, tuna,

anchovy, sardine, and horse mackerel (Figure 1) . The main dietary sources of LA are sunflower, soybean,

and corn oils . In contrast, the main dietary sources of AA are foods of animal origin, such as as beef, pork,

lamb, chicken, turkey, and eggs . Dietary sources of n-6 and n-3 polyunsaturated fatty acids influence brain

development.

Figure 1. Dietary sources of n-6 and n-3 polyunsaturated fatty acids and impact in brain development. AA:

arachidonic acid; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; LCPUFA: long-chain polyunsaturated

fatty acid; LA: linoleic acid.

3. DHA and AA in Neuronal Development and Function

DHA and AA can modulate neuronal function by influencing: (i) the physical properties of neuronal membranes by

modulating ion channels and vesicular transport for endo/exocytosis of membrane-bound proteins ; (ii) signal

transduction, by modulating G protein-mediated second messenger systems; and (iii) gene expression, through

direct binding to transcription factors  or through the regulation of signaling cascades by eicosanoids derived

[50][51]

[52][53]

[54][55][56]

[52]

[44]

[11][57]

[58]



DHA and AA: Neuroprotective Nutrient | Encyclopedia.pub

https://encyclopedia.pub/entry/8378 4/19

from AA and DHA-derived docosanoids. In this sense, DHA and AA are crucial for the metabolism, growth, and

differentiation of neurons  (Figure 2).

Figure 2. AA and DHA in neuronal development and function. AA: arachidonic acid; ALA: alpha-linolenic acid; DHA:

docosahexaenoic acid; EPA: eicosapentaenoic acid; LA: linoleic acid.

3.1. DHA in Neuronal Metabolism

DHA represents more than 90% of the n-3 LCPUFA in the brain , mainly as part of the membrane phospholipids

in the brain gray matter , constituting 35% of the total fatty acids in the synaptic membranes . DHA is

primarily esterified to phosphatidylethanolamine, phosphatidylserine, and to a lesser extent phosphatidylcholine in

neuronal membranes. The structural properties of DHA, such as the length of its carbon chain and its six double

bonds, give flexibility and fluidity to the neuronal plasma membrane, facilitating signal transduction into the cell 

. The fluidity of the neuronal membrane facilitates the lateral movement of receptors, G proteins, ion channels

, enzymes , and neuroreceptors, increasing the efficiency in signal transduction . In the brain, DHA is

involved in neuronal growth, neuronal migration, synaptogenesis, synaptic plasticity, and gene expression 
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. Neurons cannot form DHA from its precursor ALA, but the glial cells, (especially astrocytes) can desaturate and

elongate dietary ALA to convert it into DHA, which is subsequently transferred to most neurons . DHA can

also modulate the expression of genes related to neuronal energy generation involved in the function of the

respiratory chain and ATP synthesis (adenosine triphosphate synthase) . That function is relevant because

approximately 50% of mitochondrial ATP is consumed by the Na+/K+ ATPase pump to maintain cell homeostasis

and ionic gradients, a fundamental requirement for neuronal electrical excitability .

3.2. AA in Neuronal Metabolism

As already mentioned, AA is one of the most abundant fatty acids in the brain . This n-6 LCPUFA is

indispensable for brain growth and modulation of cell division and signaling . During brain development, the

concentration of AA increases rapidly . It has been described in animal models that approximately 70–80% of AA

concentration that is reached in adulthood is the result of its cerebral accumulation in the early postnatal period .

AA is an immediate precursor of adrenic acid (C22:4n-6, AdA), fatty acid found in large amounts in myelinic lipids,

especially in phosphatidylethanolamine and phosphatidylcholine , suggesting the fundamental role of AA as a

precursor of AdA in the development of neural tissue . Conversion of AA to AdA may represent an important

mechanism for supplying the high demand for AdA at the brain level, which is essential for neuronal myelinic lipid

enrichment . Wijendran et al. (2002)  investigated the metabolism of preformed AA in newborn baboons by

the administration of a single oral dose of C -labeled AA, reporting that 79–93% of AA consumed accumulates in

brain membrane lipids and approximately 5% to 16% of AA is transformed into AdA . Brain accumulation of AA

and AdA occurs during the first month of life and represent 17% and 8% of the total n-6 LCPUFA, respectively .

Another brain function of AA is directly related to its participation in phosphatidylcholine (PC) structure . Some

intracellular phospholipid bilayers include AA-containing PC (AA-PC), a structure that plays a role as second

messenger participating in the long-term enhancement of synapses in the CA1 region of the hippocampus .

Using image mass spectrometry, Yang et al. (2012)  characterized the distribution of AA-PC within neurons in

cultured upper cervical nodes, finding an increasing gradient of AA-PC along the proximal to distal axonal axis

suggesting that this structure is an important source of free AA . Furthermore, it has been described that free AA

can activate protein kinases and ion channels and inhibit neurotransmitter recycling , thus contributing to better

control of synaptic transmission . In addition to the role of AA in modulating neuronal excitability, AA is also

essential in neuronal development in part because it is directly responsible for the activation of syntaxin-3, a protein

of the neuronal membrane involved in the growth and neurite repair, an essential process in neurogenesis and

subsequently in synaptic transmission .

3.3. DHA and AA as Precursors of Endocannabinoids

Remarkably, LCPUFA levels in the brain are highly correlated with dietary intake of PUFA and LCPUFA . DHA

and AA are precursors of many bioactive lipid mediators identified as docosanoids and eicosanoids, respectively,

which are actively involved in regulatory responses in inflammation (eicosanoids such as prostaglandins,

prostacyclins, thromboxanes, leucotrienes) and in resolution of inflammation (docosanoids such as resolvins and

maresins) . Both LCPUFA are also involved in the formation of endocannabinoids (eCB) with regulatory effects
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at the central nervous system (CNS) . The endocannabinoid system consists of eCB, eCB receptors CB1 and

CB2, and associated anabolic and catabolic enzymes . Their functions are to maintain body energy homeostasis

through the nutrient availability detection and the modulation of orexinergic inputs in selective regions of the CNS

. PUFA derived eicosanoids and eCB have been identified as independent ligands of CB1 and CB2 receptors

. Hammels et al. (2019)  reported that CB1 ligands synthesis in CNS depends on dietary intake of AA and

DHA in a model of fatty acid desaturase 2-deficient mouse . Moreover, DHA and AA have been recognized as

ligands of the nuclear RxR receptor in the brain, being the PUFA ratio in the western diet, a critical nutritional

parameter for numerous neurodegenerative diseases , which could increase neuroinflammation and over-

stimulation of the endocannabinoid system . AA bound to phospholipids determines the formation of eCB,

anandamide (AEA) and 2-arachidonoylglycerol (2-AG), molecules involved in the regulation of neuroinflammatory

responses by microglia and astrocytes . On the contrary, long-term supplementation with DHA and EPA reduces

AEA and 2-AG synthesis . N-3 and n-6 PUFA derived eCB are synthesized by lipoxygenases (LOX),

cyclooxygenase 2 (COX-2), and cytochrome P450 epoxygenases (CYP450). Nevertheless, only LOX and CYP450

metabolites have been reported for a DHA eCB derivative; n-docosahexaenoylethanolamide (DHEA), and only

CYP450 metabolites for an EPA eCB derivative; eicosapentaenoyl ethanolamide (EPEA) . The physiological role

of the metabolites generated by LOX and CYP450 remains to be elucidated to understand how these derivatives

modulate cell signaling in health and disease . A better understanding of the relationship between DHA, AA, and

the endocannabinoid system is expected to lead to advances in the development of their therapeutic potential and

the development of more specific treatment options for the prevention and treatment of neurodegenerative

diseases .

4. DHA and AA in Neuroprotection

The most frequent neurodegenerative age-related diseases are Alzheimer’s Disease (AD) and Parkinson’s Disease

(PD) . Although the etiopathogenesis and clinical characteristics of AD and PD are different, these diseases

share common mechanisms of damage, such as mitochondrial dysfunction , neuroinflammation , and

oxidative stress . AD is characterized by dementia, memory loss, and cognitive decline, disorders that are

worsened with aging . In 2019, the World Alzheimer Report indicated that more than 50 million people live with

dementia worldwide, a number that will increase up to 152 million by 2050 . In this regard, every three seconds,

a person develops dementia, and the current annual cost of dementia is estimated at US $ 1 trillion, which is

estimated to double by 2030 .

DHA via enzyme 15-lipoxygenase (15-LOX) can be converted in oxylipins, including resolvins and neuroprotectins,

which are potent lipid mediators . Furthermore, DHA may undergo lipid peroxidation producing oxylipin

metabolites, such as 4-hytoxyhexenal (4-HHE) . These metabolites may have a role in modulating oxidative

cell homeostasis by regulating the activity of the transcription factors nuclear factor kappa-B (NF-κB) and nuclear

factor erythroid 2-related factor 2 (Nrf2), thus participating in the inflammatory and antioxidant response, and

neuroprotection . Osterman et al. (2019)  assigned healthy adults with low fish consumption (n = 121) to

receive capsules with different doses of n-3 LCPUFA reflecting three patterns of fatty fish consumption: 1, 2, or 4
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servings/week with 3.27 g of EPA + DHA (1:1.2) per serving or placebo. The authors reported that plasma oxylipins

after 3 and 12 months increased linearly with the highest intake of EPA and DHA .

Aging is a normal process of the life cycle, and its progression is usually accompanied by the decrease of a wide

range of body functions, including cognitive function, marked by decreased synaptic density, decreased neuronal

survival, and loss of volume of the gray and white matter . Alteration of lipid metabolism also occurs 

and is associated with the dysfunction of fluidity and activity of brain cell membranes microdomains (or rafts) .

Exacerbation of alteration of lipid metabolism generates abnormal brain activity that can potentially lead to the

development of neurodegenerative diseases . Factors contributing to the early cognitive decline include

diseases related to unhealthy lifestyles and metabolic syndrome . Among them, atherosclerosis and

hypertension are relevant because an altered blood flow generates hypoperfusion and vascular dysfunction,

causing an impairment of the blood-brain barrier and triggering neurodegenerative processes that lead to cognitive

deterioration and, ultimately, to the development of AD .

The pathogenesis of AD has not been fully resolved. However, it is known that the mechanisms that trigger the

pathology are related to: (i) low levels of acetylcholine ; (ii) aggregation of insoluble β-amyloid (Aβ) peptides, a

product of abnormal processing of the amyloidal precursor protein, in neuritic plaques, leading to Aβ accumulation

in the CNS ; (iii) hyperphosphorylation of the tau protein associated with microtubules, causing

intraneuronal accumulation of neurofibrillary tangles of tau protein and disruption of neuronal microtubules ;

and (iv) oxidative stress, leading to inflammation, synaptic toxicity and accumulation of intraneuronal inclusions 

 (Figure 3). Regarding its clinical characteristics, AD is a slowly progressive disease and three stages can be

recognized in its evolution: the first is characterized by memory failures; in the second, language disorders,

apraxias, and Gerstmann syndrome (agraphia and agnosia) are frequently added; and in the third stage, the

patient is physically disabled and prostrated .
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Figure 3. Mechanisms involved in the pathogenesis of Alzheimer’s disease (AD).

PD is the second most common neurodegenerative disease after AD , affecting 2%-3% of the population ≥65

years old . The etiopathogenesis of the disease includes: (i) intracellular aggregation of α-synuclein causing the

formation of Lewy bodies ; (ii) neuronal loss of the substantia nigra pars compacta (SNPc) leading to a

marked striatal dopamine deficiency ; (iii) mitochondrial dysfunction, due to defects in the activity and

incorrect assembly of complex I of the mitochondrial electron transport chain  (inhibition of mitochondrial

complex I induces neuronal cell death in the SNPc leading to dopaminergic decrease) ; (iv) oxidative stress

, the nigral dopaminergic neurons are particularly vulnerable to metabolic diseases and oxidative stress 

; and (v) neuroinflammation  (Figure 4). The clinical evolution of PD is characterized by motor

disturbances due to progressive nigrostriatal dopaminergic neurodegeneration that occurs in parallel with

decreased levels of striatal dopamine, dopaminergic synapses, and the density of dendritic spines in mid-striated

spinal neurons . Other non-motor symptoms of PD include cognitive impairment  and gastrointestinal

dysfunctions .
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Figure 4. Mechanisms related with the pathogenesis of Parkinson’s disease (PD).
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