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It has been well established in epidemiological studies and randomized controlled trials that habitual exercise is
beneficial for brain health, such as cognition and mental health. Generally, it may be reasonable to say that the
physiological benefits of acute exercise can prevent brain disorders in late life if such exercise is

habitually/chronically conducted.

Exercise Brain Health Lactate

1. Exercise Intensity and Modality for Brain Health Regarding
Chronic Exercise Adaptation (Implication of Lactate)

To promote and maintain health, the American College of Sports Medicine (ACSM) and American Heart Association
(AHA) recommends that healthy adults aged 18-65 years perform sufficient volumes of exercise, such as
moderate-intensity exercise for at least 30 min for 5 days/week or vigorous-intensity exercise for 20 min for 3
days/week 2. Importantly, compared to habitual lower-intensity exercise, higher-intensity exercise can effectively
improve cardiovascular and metabolic health BB |n particular, long-term/chronic high-intensity interval exercise
(HIE) training (i.e., HIIT) is more effective than long-term/chronic moderate-intensity continuous exercise (MCE)
because it increases exercise capacity in addition to cardiovascular and metabolic health in healthy individuals 28!
[, The effectiveness of HIIT over MCE training is also relevant for brain health. Recently, Mekari et al.
demonstrated that HIIT was more effective for the improvement of executive function (EF) than MCE training in
young adults Bl. A recent meta-analysis indicated that HIIT might be more effective for improving severe mental
illness (e.g., cognition, negative and positive symptoms of schizophrenia, and depressive mood) than moderate-
intensity exercise [l Given that HIIE produces more lactate than general exercise modalities, such as MCE, some
beneficial effects of lactate on health, including brain health, can be implicated. For instance, based on the notion
that acute exercise that is favorable for improving brain function is also beneficial for brain health with continuous
repetition via chronic exercise training, previous study demonstrated that HIIE could improve EF rather than MCE
and was accompanied by more lactate production 29 which may imply a potential benefit of lactate on increased

cognitive performance by HIIE and subsequent HIIT.

2. Chronic Cognitive and Mental Alterations with Regular
Exercise and Its Potential Link to Chronic Exercise-Induced
Anatomical and Cerebral Microvasculature Alterations
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The potential mechanisms of habitual exercise/physical activity-induced improvement as well as aging-induced
impairments in cognitive performance and mental health remain unclear but are assumed to be associated with
several physiological factors. For instance, the deleterious effects of aging on the brain comprise negative
physiological and anatomical alterations, e.g., hemodynamic activity, synaptic plasticity, decreased brain volume
and neurogenesis, while physical activity prevents the deleterious effects on the brain and, in contrast, induces
brain neural alterations, including the formation of new neurons, the proliferation of neural cells, and integrated
functional neural networks L1121 |n particular, structural alterations, such as increased neurogenesis,
synaptogenesis, angiogenesis, and brain volume, seem to be characteristics of the beneficial effects of chronic

exercise on cognitive performance and mental health (3],

Regular aerobic exercise can increase or preserve the regional brain volume in areas associated with cognitive
decline and portions of mental health 14231181 |t has been reported that aerobic exercise (i.e., 6 to 12 months of a
walking program) increases spatial memory as well as gray and white matter volumes in both temporal (including
the hippocampi) and prefrontal regions in healthy older adults (without dementia) 7. In addition, Jonasson et al.
demonstrated that following a 6-month exercise training period, the change in “cognitive score” determined by
episodic memory, updating, processing speed, and EF was positively related to the thickness of the dorsolateral
prefrontal cortex 18], Regarding mental health, patients with major depressive disorder or schizophrenia show
decreased hippocampal or gray matter volume 19201 while an exercise-induced increase in hippocampal volume
can be related to cognitive performance even in patients with schizophrenia 2. However, whether brain structure
is associated with psychiatric and neurological disorders is controversial (21, and whether the positive effects of
aerobic exercise can be extended to psychiatric disorders is still unclear 14!, Further studies are needed to uncover

the pathophysiology of mental disorders and improve the effect of exercise or physical activity.

In addition to brain structural/anatomical alterations, changes in cerebral microvasculature function can be a
physiological factor that may elicit exercise-enhanced brain function. Since the energy reserve of the brain is
relatively small, a continuous supply of glucose and oxygen from the cerebral circulation to the brain is required to
maintain its function, e.g., cognitive performance. Thus, especially in the brain, synaptic activity suddenly increases
the demand for energy for maintaining brain function and consequently might cause a relative lack of oxygen and
glucose. However, in the brain, the neural activity causes neurovascular coupling with accordingly transient and
adequate increases in regional cerebral blood flow (CBF) and consequently partially maintains brain function 22,
Indeed, the onset of cognitive impairment often occurs following cerebrovascular dysfunction, suggesting that
dysfunction of CBF regulation is one of the mechanisms of the onset of dementia 23. Furthermore, a decrease in
the response of regional CBF to a simple motor task occurs when either intracranial carotid arteries or one
vertebral artery is occluded in asymptomatic patients 24 In addition, neural coupling to several physiological
stimuli and resting CBF are reduced in patients with Alzheimer’s disease [22128]1271[28]129] These findings indicate
that brain function via neurovascular coupling is attenuated by inadequate global or focal CBF regulation; thus, the

regulation of global CBF is important to maintain adequate neural coupling 22 and thus brain function.
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3. Can Acute Alterations in CBF to Exercise Affect Cognitive
Performance?

As mentioned above, it is expected that maintaining brain function requires adequate CBF regulation as an
important physiological factor. However, no study has examined whether alterations in CBF directly modify
cognitive performance because CBF cannot be isolated from the many physiological factors that affect cognitive

performance in patients with cerebral disease, vascular disease, or dementia, as well as in healthy older adults.

Basically, augmented cerebral metabolism or cerebral neural activity BUELE2 gre accompanied by transient
increases in CBF [38I34I33] a5 well as cognitive performance B8I87] during and/or following mild- to moderate-
intensity aerobic exercise. In contrast, similar to the decrease in CBF associated with hyperventilation during
prolonged or heavy aerobic exercise 4l the exercise-induced facilitation of cognitive performance disappears
during such prolonged exercise 28, From this background, researchers previously examined for the first time
whether manipulation of CBF alteration affects cognitive performance in young, healthy participants 2. In contrast
to the hypothesis, however, cognitive performance improved in response to the decrease in CBF during prolonged
heavy exercise, and unexpectedly, an isolated change (i.e., hypercapnia-induced increase) in CBF did not affect
cognitive performance at rest or during exercise 2. Furthermore, several studies reported that increases in CBF
during exercise were not directly related to changes in cognitive performance 2941 These findings suggest that
acute exercise-induced cognitive improvement may not have the same narrative as that of chronic exercise in
terms of the cerebrovascular system; thus, it is not simply due to an increase in global CBF, implying that another

factor modified by exercise, rather than a change in CBF, affects cognitive performance.

| 4. Cerebral Lactate Metabolism and Cognitive Performance

A decrease in cerebral oxygenation is induced by prolonged exercise 2942 or exercise under mild or severe
hypoxia 43441 while impaired cognitive performance is not evident in healthy young participants, suggesting a
dissociation between an alteration in CBF and subsequent change in oxygen delivery to the brain and cerebral
metabolism or cognitive performance. Indeed, albeit with a reduction in CBF during heavy exercise, the elevation of
brain neural activity and metabolism might be accompanied by compensatory increases in the uptake of lactate,
glucose, and oxygen support for the brain (arterial-jugular venous difference) B%. Given that augmented brain
neural activity and metabolism are independent of increases in CBF 43l extensive activation of motor and sensory
systems due to the higher-order function of the prefrontal cortex may affect cognitive performance rather than

cerebral perfusion in response to exercise.

Regarding metabolism, although the brain relies mainly on glucose at rest, during high-intensity exercise, the brain
becomes dependent on lactate delivery 481471 and repeated HIIE, which attenuates the increase in systemic blood
lactate, resulting in impaired maintenance of HIIE-enhanced cognitive performance (i.e., EF) &, In particular, HIIE
may facilitate neuronal activation and excitation levels to the extent that summation is facilitated to improve
cognitive performance L9450 Neuronal activation is associated with an increase in energy requirements due to

the transport of neurotransmitters and ions 21, and neurons preferentially utilize lactate as a fuel in vivo 52,
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Sustained elevation of arterial/systemic lactate in response to intense exercise promotes the supply of lactate as
an energy substrate to meet acute neuronal energy requirements B3Il |n addition, intravenous infusion of 100
mM L-lactate into rats promoted cognitive recovery by preserving cerebral ATP generation following traumatic brain
injury B8, Furthermore, Skriver et al. found a correlation between systemic lactate concentration and the
acquisition and retention of motor skills 4. In addition, lactate supports synaptic activity B8 long-term potentiation
and memory formation B2, and neuronal plasticity 2. These findings suggest that brain function as expressed by
cognitive performance depends on the provision of lactate. Indeed, researchers manipulated blood lactate during
exercise at a given intensity by repeated HIIE and evaluated whether such manipulation of peripheral lactate
metabolism affects brain lactate uptake (i.e., the arterial-jugular venous difference in lactate (a-v diffizctate)) @nd EF
61 Researchers found that brain lactate uptake is associated with the arterial lactate concentration, and
inadequate lactate provision to the brain might attenuate exercise (i.e., HIIE)-enhanced EF Bl irrespective of
increased BDNF and catecholamine, both of which are supposed to relate to cognitive performance [2262]63]
Given the reliance on lactate as a fuel for the brain, variations in blood lactate could affect cognitive performance

during and after exercise and account for the significance of exercise (i.e., muscle contraction) for brain function.

On the other hand, a recent study demonstrated that chronic lactate administration to mice promotes hippocampal
neurogenesis but does not affect cognitive performance 4. In addition, Sudo et al. found that recovery of
prefrontal oxygenation affected cognitive performance after exhaustive exercise, irrespective of the blood lactate
concentration (3. Further studies are warranted to understand the role of lactate in brain function in acute and

chronic exercise.

5. Can Cerebral Blood Flow Regulation That Determines
Brain Function Be Modified by Lactate?

Biochemical regulation of the cerebrovascular system by lactate is also evident in an acute setting. Gordon et al.
demonstrated in rat brain slices that low oxygen levels facilitated lactate; hence, prostaglandin E, (PGE,) elicited
vasodilation €8 In humans, the CBF response to physiological activation induced by visual stimulation was
increased with lactate injection and plasma lactate/pyruvate ratio and subsequently augmented the NADH/NAD*
ratio 87, This increase in lactate/pyruvate and NADH/NAD*" ratios may be related to the increase in CBF, probably
through nitric oxide (NO) production 8l In a clinical setting, hypertonic lactate injection increased cerebral
perfusion and brain glucose availability and decreased the pulsatility index after acute brain injury €2, In addition,
the brain-injured person is hypermetabolic, and lactate has a pivotal role in supplying energy to bypass the
restriction in glycolytic flux and spare limited glucose reserves for other cerebral metabolisms (e.g., pentose
phosphate pathway for neuroprotection) (see /9). Indeed, acute lactate infusion into mild traumatic brain injury
patients improved their cognitive function as evaluated by the Mini Mental State Examination (MMSE), with several
possible mechanisms, such as the energy substrate effect, the prevention of hyperchloremia, and the reduction in

brain cell edema, by restoring impaired brain homeostasis and synapse function after brain injury [,
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