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It has been well established in epidemiological studies and randomized controlled trials that habitual exercise is

beneficial for brain health, such as cognition and mental health. Generally, it may be reasonable to say that the

physiological benefits of acute exercise can prevent brain disorders in late life if such exercise is

habitually/chronically conducted. 

Exercise  Brain Health  Lactate

1. Exercise Intensity and Modality for Brain Health Regarding
Chronic Exercise Adaptation (Implication of Lactate)

To promote and maintain health, the American College of Sports Medicine (ACSM) and American Heart Association

(AHA) recommends that healthy adults aged 18–65 years perform sufficient volumes of exercise, such as

moderate-intensity exercise for at least 30 min for 5 days/week or vigorous-intensity exercise for 20 min for 3

days/week . Importantly, compared to habitual lower-intensity exercise, higher-intensity exercise can effectively

improve cardiovascular and metabolic health . In particular, long-term/chronic high-intensity interval exercise

(HIIE) training (i.e., HIIT) is more effective than long-term/chronic moderate-intensity continuous exercise (MCE)

because it increases exercise capacity in addition to cardiovascular and metabolic health in healthy individuals 

. The effectiveness of HIIT over MCE training is also relevant for brain health. Recently, Mekari et al.

demonstrated that HIIT was more effective for the improvement of executive function (EF) than MCE training in

young adults . A recent meta-analysis indicated that HIIT might be more effective for improving severe mental

illness (e.g., cognition, negative and positive symptoms of schizophrenia, and depressive mood) than moderate-

intensity exercise . Given that HIIE produces more lactate than general exercise modalities, such as MCE, some

beneficial effects of lactate on health, including brain health, can be implicated. For instance, based on the notion

that acute exercise that is favorable for improving brain function is also beneficial for brain health with continuous

repetition via chronic exercise training, previous study demonstrated that HIIE could improve EF rather than MCE

and was accompanied by more lactate production , which may imply a potential benefit of lactate on increased

cognitive performance by HIIE and subsequent HIIT.

2. Chronic Cognitive and Mental Alterations with Regular
Exercise and Its Potential Link to Chronic Exercise-Induced
Anatomical and Cerebral Microvasculature Alterations
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The potential mechanisms of habitual exercise/physical activity-induced improvement as well as aging-induced

impairments in cognitive performance and mental health remain unclear but are assumed to be associated with

several physiological factors. For instance, the deleterious effects of aging on the brain comprise negative

physiological and anatomical alterations, e.g., hemodynamic activity, synaptic plasticity, decreased brain volume

and neurogenesis, while physical activity prevents the deleterious effects on the brain and, in contrast, induces

brain neural alterations, including the formation of new neurons, the proliferation of neural cells, and integrated

functional neural networks . In particular, structural alterations, such as increased neurogenesis,

synaptogenesis, angiogenesis, and brain volume, seem to be characteristics of the beneficial effects of chronic

exercise on cognitive performance and mental health .

Regular aerobic exercise can increase or preserve the regional brain volume in areas associated with cognitive

decline and portions of mental health . It has been reported that aerobic exercise (i.e., 6 to 12 months of a

walking program) increases spatial memory as well as gray and white matter volumes in both temporal (including

the hippocampi) and prefrontal regions in healthy older adults (without dementia) . In addition, Jonasson et al.

demonstrated that following a 6-month exercise training period, the change in “cognitive score” determined by

episodic memory, updating, processing speed, and EF was positively related to the thickness of the dorsolateral

prefrontal cortex . Regarding mental health, patients with major depressive disorder or schizophrenia show

decreased hippocampal or gray matter volume , while an exercise-induced increase in hippocampal volume

can be related to cognitive performance even in patients with schizophrenia . However, whether brain structure

is associated with psychiatric and neurological disorders is controversial , and whether the positive effects of

aerobic exercise can be extended to psychiatric disorders is still unclear . Further studies are needed to uncover

the pathophysiology of mental disorders and improve the effect of exercise or physical activity.

In addition to brain structural/anatomical alterations, changes in cerebral microvasculature function can be a

physiological factor that may elicit exercise-enhanced brain function. Since the energy reserve of the brain is

relatively small, a continuous supply of glucose and oxygen from the cerebral circulation to the brain is required to

maintain its function, e.g., cognitive performance. Thus, especially in the brain, synaptic activity suddenly increases

the demand for energy for maintaining brain function and consequently might cause a relative lack of oxygen and

glucose. However, in the brain, the neural activity causes neurovascular coupling with accordingly transient and

adequate increases in regional cerebral blood flow (CBF) and consequently partially maintains brain function .

Indeed, the onset of cognitive impairment often occurs following cerebrovascular dysfunction, suggesting that

dysfunction of CBF regulation is one of the mechanisms of the onset of dementia . Furthermore, a decrease in

the response of regional CBF to a simple motor task occurs when either intracranial carotid arteries or one

vertebral artery is occluded in asymptomatic patients . In addition, neural coupling to several physiological

stimuli and resting CBF are reduced in patients with Alzheimer’s disease . These findings indicate

that brain function via neurovascular coupling is attenuated by inadequate global or focal CBF regulation; thus, the

regulation of global CBF is important to maintain adequate neural coupling  and thus brain function.
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3. Can Acute Alterations in CBF to Exercise Affect Cognitive
Performance?

As mentioned above, it is expected that maintaining brain function requires adequate CBF regulation as an

important physiological factor. However, no study has examined whether alterations in CBF directly modify

cognitive performance because CBF cannot be isolated from the many physiological factors that affect cognitive

performance in patients with cerebral disease, vascular disease, or dementia, as well as in healthy older adults.

Basically, augmented cerebral metabolism or cerebral neural activity  are accompanied by transient

increases in CBF  as well as cognitive performance  during and/or following mild- to moderate-

intensity aerobic exercise. In contrast, similar to the decrease in CBF associated with hyperventilation during

prolonged or heavy aerobic exercise , the exercise-induced facilitation of cognitive performance disappears

during such prolonged exercise . From this background, researchers previously examined for the first time

whether manipulation of CBF alteration affects cognitive performance in young, healthy participants . In contrast

to the hypothesis, however, cognitive performance improved in response to the decrease in CBF during prolonged

heavy exercise, and unexpectedly, an isolated change (i.e., hypercapnia-induced increase) in CBF did not affect

cognitive performance at rest or during exercise . Furthermore, several studies reported that increases in CBF

during exercise were not directly related to changes in cognitive performance . These findings suggest that

acute exercise-induced cognitive improvement may not have the same narrative as that of chronic exercise in

terms of the cerebrovascular system; thus, it is not simply due to an increase in global CBF, implying that another

factor modified by exercise, rather than a change in CBF, affects cognitive performance.

4. Cerebral Lactate Metabolism and Cognitive Performance

A decrease in cerebral oxygenation is induced by prolonged exercise  or exercise under mild or severe

hypoxia , while impaired cognitive performance is not evident in healthy young participants, suggesting a

dissociation between an alteration in CBF and subsequent change in oxygen delivery to the brain and cerebral

metabolism or cognitive performance. Indeed, albeit with a reduction in CBF during heavy exercise, the elevation of

brain neural activity and metabolism might be accompanied by compensatory increases in the uptake of lactate,

glucose, and oxygen support for the brain (arterial-jugular venous difference) . Given that augmented brain

neural activity and metabolism are independent of increases in CBF , extensive activation of motor and sensory

systems due to the higher-order function of the prefrontal cortex may affect cognitive performance rather than

cerebral perfusion in response to exercise.

Regarding metabolism, although the brain relies mainly on glucose at rest, during high-intensity exercise, the brain

becomes dependent on lactate delivery  and repeated HIIE, which attenuates the increase in systemic blood

lactate, resulting in impaired maintenance of HIIE-enhanced cognitive performance (i.e., EF) . In particular, HIIE

may facilitate neuronal activation and excitation levels to the extent that summation is facilitated to improve

cognitive performance . Neuronal activation is associated with an increase in energy requirements due to

the transport of neurotransmitters and ions , and neurons preferentially utilize lactate as a fuel in vivo .
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Sustained elevation of arterial/systemic lactate in response to intense exercise promotes the supply of lactate as

an energy substrate to meet acute neuronal energy requirements . In addition, intravenous infusion of 100

mM L-lactate into rats promoted cognitive recovery by preserving cerebral ATP generation following traumatic brain

injury . Furthermore, Skriver et al. found a correlation between systemic lactate concentration and the

acquisition and retention of motor skills . In addition, lactate supports synaptic activity , long-term potentiation

and memory formation , and neuronal plasticity . These findings suggest that brain function as expressed by

cognitive performance depends on the provision of lactate. Indeed, researchers manipulated blood lactate during

exercise at a given intensity by repeated HIIE and evaluated whether such manipulation of peripheral lactate

metabolism affects brain lactate uptake (i.e., the arterial–jugular venous difference in lactate (a-v diff )) and EF

. Researchers found that brain lactate uptake is associated with the arterial lactate concentration, and

inadequate lactate provision to the brain might attenuate exercise (i.e., HIIE)-enhanced EF , irrespective of

increased BDNF and catecholamine, both of which are supposed to relate to cognitive performance .

Given the reliance on lactate as a fuel for the brain, variations in blood lactate could affect cognitive performance

during and after exercise and account for the significance of exercise (i.e., muscle contraction) for brain function.

On the other hand, a recent study demonstrated that chronic lactate administration to mice promotes hippocampal

neurogenesis but does not affect cognitive performance . In addition, Sudo et al. found that recovery of

prefrontal oxygenation affected cognitive performance after exhaustive exercise, irrespective of the blood lactate

concentration . Further studies are warranted to understand the role of lactate in brain function in acute and

chronic exercise.

5. Can Cerebral Blood Flow Regulation That Determines
Brain Function Be Modified by Lactate?

Biochemical regulation of the cerebrovascular system by lactate is also evident in an acute setting. Gordon et al.

demonstrated in rat brain slices that low oxygen levels facilitated lactate; hence, prostaglandin E  (PGE ) elicited

vasodilation . In humans, the CBF response to physiological activation induced by visual stimulation was

increased with lactate injection and plasma lactate/pyruvate ratio and subsequently augmented the NADH/NAD

ratio . This increase in lactate/pyruvate and NADH/NAD  ratios may be related to the increase in CBF, probably

through nitric oxide (NO) production . In a clinical setting, hypertonic lactate injection increased cerebral

perfusion and brain glucose availability and decreased the pulsatility index after acute brain injury . In addition,

the brain-injured person is hypermetabolic, and lactate has a pivotal role in supplying energy to bypass the

restriction in glycolytic flux and spare limited glucose reserves for other cerebral metabolisms (e.g., pentose

phosphate pathway for neuroprotection) (see ). Indeed, acute lactate infusion into mild traumatic brain injury

patients improved their cognitive function as evaluated by the Mini Mental State Examination (MMSE), with several

possible mechanisms, such as the energy substrate effect, the prevention of hyperchloremia, and the reduction in

brain cell edema, by restoring impaired brain homeostasis and synapse function after brain injury .
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