
Transgenic Mouse Overexpressing Spermine Oxidase
in Cerebrocortical Neurons
Subjects: Neurosciences

Contributor: Manuela Marcoli, Chiara Cervetto, Sarah Amato, Cristian Fiorucci, Guido Maura, Paolo Mariottini, Manuela Cervelli

Polyamines (PAs) are organic polycations ubiquitously present in living cells. The main PAs in mammalian cells include

putrescine (Put), spermidine (Spd), and spermine (Spm), and their acetylated forms, N1-acetylspermidine and N1-

acetylspermine. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly

controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase

(SMOX) specifically oxidizes spermine, a neuromodulator of several types of ion channel and ionotropic glutamate

receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX

mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions

carried out by spermine oxidase and spermine in the mammalian brain.
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1. Polyamines Metabolism

Polyamines (PAs) are organic polycations ubiquitously present in living cells. The main PAs in mammalian cells include

putrescine (Put), spermidine (Spd), and spermine (Spm), and their acetylated forms, N -acetylspermidine and N -

acetylspermine (Figure 1).

Figure 1. Polyamines and their acetyl derivatives.

The PA content in mammalian cells is tightly regulated  and it has been linked to important cellular roles. Polyamines

are involved in the synthesis of proteins and nucleic acid and in the maintenance of their structure, in the regulation of the

activity of ion channels, in cell proliferation, differentiation, and apoptosis, as well as in protection from oxidative damage

. Altered PA cellular levels have been reported in several pathological conditions of the Central Nervous System

(CNS). One of the best examples is the low level of Spm observed in the Snyder–Robinson syndrome, an intellectual

disability disorder with movement disorder and seizures, due to a rare mutation of the Spm synthase gene in the X-

chromosome . Alteration in the PAs’ synthesis and metabolism have been reported to be correlated with suicidal

behavior . Multiple symptoms including neurological abnormalities are also reported in rodent models of altered PA

synthesis and catabolism . Notably, PAs have been suggested to counteract cognitive impairment in animal models by

activating autophagy and mitochondrial function, and high dietary Spd intake correlated with lower risk for cognitive

impairment in humans. Polyamine biosynthesis is carried out by the action of four enzymes: S-adenosylmethionine

decarboxylase enzyme (AdoMetDC), ornithine decarboxylase enzyme (ODC), spermine synthase (SMS), and spermidine

synthase (SPDS) . While a PA catabolic pathway is dependent on the activity of three enzymes: N -acetylpolyamine
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oxidase (PAOX), spermidine/spermine N -acetyltransferase (SAT1), and spermine oxidase (SMOX) . Figure 2
depicts a schematic representation of the PA metabolism.

Figure 2. Polyamine’s metabolism. Enzymes involved in PA biosynthesis and catabolism are encircled and boxed,

respectively. ADC, arginine decarboxylase; AGM-1, agmatinase; ARG, arginase; ASS, arginino-succinate synthase; ODC,

ornithine decarboxylase; OTC, ornithine transcarbamylase; PAOX, N -acetylpolyamine oxidase; SAT1,

spermidine/spermine N -acetyltransferase; SMS, spermine synthase; SPDS, spermidine synthase. Spermine oxidase

(SMOX) is highlighted in red and is overexpressed in the DACH-SMOX transgenic mice model, (ARG), (AGM1), (ADC),

(OTC).

2. The SMOX Overexpressing Mouse: An Animal Model of Chronic Spm
Catabolism Activation

The enzyme SMOX specifically recognizes Spm as a substrate to produce Spd, with the production of hydrogen peroxide

(H O ) and 3-aminopropanal (3-AP) (Figure 3) .

Figure 3. Spermine oxidase enzymatic reaction. The substrate spermine is oxidized to produce spermidine, 3-

aminopropanal (3-AP), and hydrogen peroxide (H O ).

The SMOX enzyme is expressed in various tissues, mainly in brain and skeletal muscle, and regulates the Spm/Spd ratio

to keep the cellular PA content balanced . Apart from its role in the basal PA metabolism, the SMOX substrate Spm

has an important function in the brain, since intracellular Spm is also a neuromodulator responsible for intrinsic gating and

rectification of strong inward rectifier K  channels (Kir) by directly plugging the ion channel pore . Moreover, the

intracellular level of Spm, by plugging the receptor channel pore, can also cause inward rectification of some subtypes of
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alpha-amino-3-hydroxy-5-methyl-4-isoxazole- propionic acid (AMPA) and kainate Ca -permeable receptors in the CNS

. Furthermore, extracellular Spm has multiple effects at the N-methyl-D-aspartate (NMDA) subtype of glutamate

receptors, increasing the intensity of NMDA receptor currents and voltage-dependent blocks . The oxidation

product of SMOX Spd is also a neuromodulator, but less potent than Spm since it binds the same channel receptors with

much less affinity . Several works have highlighted new roles for Spd that protect from age-induced memory

impairment acting directly at synapses by means of an autophagy-dependent homeostatic regulation  or enhancing

eEF5/EIF5A hypusination, cerebral mitochondrial function, and cognition in aging Drosophila melanogaster and mice .

It has been demonstrated that Spd induces autophagy in several model systems, including rodent tissues and cultured

human cells . The integrity of the autophagic system has been suggested to be crucial for the Spd-mediated

protection from age-associated presynaptic active zone changes and increase in the active zone scaffold components in

D. melanogaster . Furthermore, SMOX activity not only controls Spm/Spd cellular ratio, but it is also a source of cellular

redox alteration by producing H O , a reactive oxygen species (ROS). Hydrogen peroxide can also modulate brain Long-

Term Potentiation in a dose-dependent manner, but an excessive increase of it can result in learning and memory

impairment . Spermine oxidation by SMOX is also responsible for secondary tissue damage, due to the generation of

3-AP, which spontaneously converts into acrolein . Noteworthy, the production of acrolein in the injured brain is a

further source of inflammation and apoptotic cell death; in line with this, a decrease in Spm content and an increase in

plasma protein conjugated-acrolein (PC-Acro) could be considered a good marker for brain infarction . Furthermore, in

stroke patients, the high levels of SMOX, PAOX, and PC-Acro in plasma correlates with the stroke size .

A mouse model conditionally overexpressing SMOX in the neocortical neurons with a CD1 background, formerly

JoSMOrec, now DACH-SMOX, has been engineered (Figure 4) .

Figure 4. Scheme of Dach-SMOX mouse generation. (A) CRE recombination scheme between Dach-CRE and GFP-

SMOX to obtain Dach-SMOX mouse lines. (B) Left-side, LacZ staining of wholemount at E12.5 mouse developmental
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stage of Dach-SMOX and control embryos; right-side, LacZ staining of brains at E14.5 mouse developmental stage of

Dach-SMOX and control embryos.

The Dach-SMOX mouse line is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress

and excitotoxic insults . Notably, the mice revealed to be a chronic model of increased susceptibility to seizures

that might help to understand neuron vulnerability to insult as well as epileptogenesis. This mouse genetic line provides a

potential model to be further exploited, in addition to simple acute epilepsy animal models, for new pharmacological

approaches to cure epilepsy. The results obtained from the study on SMOX overexpressing mice are of relevance also in

the scenario of the increasingly recognized importance of astrocytes in brain function , which is now shifting from

a neurocentric to a neuro-astrocentric view . In fact, chronic overexpression of SMOX in cortical neurons of Dach-

SMOX mice severely affects their astrocyte morphology and function, and heavily influences cerebrocortical synapse

functioning . The findings support roles for endogenous PAs in maintaining neuron–astrocyte cross-talk and in

neuroprotection , and that an imbalance of PA synthesis and flux can alter the neuron–glial communication in the brain

. Consistently, accumulating evidence indicates that PAs are synthesized in neurons, released from neurons into

the extracellular space, and preferentially accumulated in glial cells  from glial cells, they can then be secreted back to

neurons . Indeed, in SMOX-overexpressing mouse changes of PA metabolism and H O  overproduction co-occurring

in cerebrocortical neurons seemingly to affects astrocytes, and in turn, neurons. In particular, reactive astrocytosis and

neuron loss are the main effects of the chronic activation of Spm catabolism in cerebrocortical neurons in Dach-SMOX

mice, together with chronic oxidative stress and excitotoxicity . The main changes and their molecular

mechanisms in the Dach-SMOX line are highlighted in the following paragraphs.

3. Reactive Astrocytosis

The relevance of neuron-astrocyte networks to the control of signal transmission and the regulation of brain function is

widely recognized . Astrocytes provide neurons with energy substrates, nutrients and neurotransmitter

precursors, structural support around synapses, and buffering of the excess of K  and neurotransmitters in the

extracellular space . Astrocytes regulate extracellular glutamate concentration by balancing its uptake through

the glutamate transporters EAAT1 and EAAT2, and its release and uptake through the antiporter cystine-glutamate

exchanger xc  . Furthermore, astrocytes and, in particular, the astrocytes processes, can release glutamate in a

Ca -dependent vesicular or Ca -independent ways . The perisynaptic astrocytic

processes (PAPs), which envelop synapses and are primarily involved in astrocyte-neuron communication at tripartite

synapses , display rapid movements and Ca  elevations in response to neuronal activity , and regulate coverage

of synapses, synapse plasticity, and the interstitial space volume . In response to brain injury, astrocytes undergo

morphological, molecular, and functional remodeling, also known as the so-called reactive astrocytosis . The

contribution of reactive astrocytes to CNS diseases and repair is matter of debate, and both detrimental and

neuroprotective actions have been attributed to reactive astrocytes . Reactive astrogliosis in the cerebral cortex of

Dach-SMOX mice is indicated by an increased number of astrocytes and morphological cellular changes consisting in

hypertrophy and wide ramification . Consistent with the presence of reactive astrocytes and a neuroinflammation

condition , a relative abundance of astrocyte processes versus nerve terminals was observed in Dach-SMOX mice,

with the increase in GFAP-positive particles, and a reduction of synaptophysin-positive particles , together with

increased levels of the astroglial markers ezrin and vimentin . Indeed, vimentin is a potential marker for reactive

astrocytes  of relevance in the control of the function of astrocytes and astrocyte processes in reactive astrocytosis

. Furthermore, an increase in ezrin, a protein preferentially localized in the fine PAPs unsheathing synapses ,

specifically indicates changes of these fine processes. This might have consequences on the synapse function, as PAPs

are involved in glia-synaptic interactions, and ezrin is required for PAPs motility and regulation of synapse coverage .

Indeed, ezrin participation in both neuroprotective and neurotoxic activities of the reactive astrocyte processes is a matter

of intense study . Altogether, these findings point out a typical remodeling of reactive astrocytes in response to chronic

activation of PA catabolism. Astrocytes in the cerebral cortex of Dach-SMOX mice may become reactive, possibly

responding to overproduction of H O  due to SMOX overexpression, and/or as a consequence of neuron impairment. In

fact, oxidative stress and inflammation are significant factors promoting reactive astrocytosis , and at the same time,

activated astrocytes are capable of generating ROS . In addition, synaptic neuronal activity is crucial to maintain

healthy astrocytes by trophic signaling that can regulate astrocyte function . It can be hypothesized that PAs are among

these trophic factors produced in neurons, then released and accumulated in glial cells . In turn, reactive

astrocytes may have detrimental effects on neurons, contributing to the dysregulation of synapse functioning . The

processes of reactive astrocytes in Dach-SMOX mice undergo the following modifications that might impact on

glutamatergic synapse function: reduced Spm content, expression of AMPA GluA2-lacking receptors linked to Ca  entry
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and activation of glutamate release, increased xc  transporter function and increased glutamate in-out transport, reduced

expression of EAAT1 and EAAT2.
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