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Super spread detection has been widely applied in network management, recommender systems, and cyberspace

security. It is more complicated than heavy hitter owing to the requirement of duplicate removal. Accurately detecting a

super spread in real-time with small memory demands remains a nontrivial yet challenging issue. 

Keywords: super spread detection ; security ; sketch ; data stream

1. Introduction

Super spread detection in real-time is crucial for security monitoring, network measurement, and resource alignment 

. In general, flow size and cardinality are two basic statistics of interest, from which a variety of traffic information can be

extracted. The flow size is the number of elements (e.g., bytes, packets, and contents) in a flow, and flow cardinality is the

number of distinct elements (e.g., distinct addresses and ports) in a flow. The most significant difference between flow size

and flow cardinality is that estimating a flow spread demands the removal of duplicate elements; however, estimating the

flow size does not. A flow refers to data traffic that has the same or similar characteristics. This research focuses on super

spread identification (super spread is a flow with high cardinality), which can be widely used for search trend detection,

recommender systems, anomaly detection, and DDoS detection .

Many studies have been proposed to find heavy flows with large sizes and have achieved significant progress .

However, finding super spreads is a more challenging problem because of the difficulty of deleting duplicates. Many useful

per-flow estimators with different theoretical precisions, such as bitmap , Linear Counter (LC) , LogLog (LL) ,

Adapt Counter (AC) , and HyperLogLog (HLL)  have been designed for various situations and datasets. However,

allocating an estimator for each flow is impractical because the required memory always exceeds the available memory.

It is challenging to find super spreads in data streams with limited memory. It is not possible to keep track of all flows

accurately considering that a considerable amount of memory will be wasted by the recording of large-scale data streams.

One strategy uses a sampling method to count a small part of the flow according to its actual cardinality. M2D is one

typical algorithm ; however, sampling strategies lose accuracy. Another strategy used in the design of the above data

structure is called estimator sharing , which uses one cardinality estimator for multiple flows. Sketch is a

type of probabilistic data structure widely used in the field of network measurement to record the frequency or estimate

the cardinality of elements in multiple sets or streams, and sketch is usually much smaller than the input size. Sketch-

based measurement is a passive measurement, which usually does not send any detection packets and does not cause

additional network overhead. Sketch uses profiles to effectively store and retrieve the information of interest, thereby

achieving the recording of the presence and volume information of active flows. Then, the majority vote algorithm

(MJRTY)  is used to find the maximum cardinality flow from the estimator and server as a possible super spread.

However, MJRTY does not work well if the cardinality of a super spread is not significantly larger than the other flows.

2. An Accurate and Invertible Sketch for Super Spread Detection

In order to save memory, estimator sharing for multi-flow spread is widely adopted. Estimator sharing hashes each flow to

𝑑 estimators, each of which produces a spread estimation for flow 𝑓  independently. The smallest estimation carries the

least error. There are two parts for one super spread: the value of cardinality and the flow label. Targeting the above two

parts, existing approaches can be divided into two categories. Both of them have made certain progress in super spread

detection; however, they also have deficiencies mainly in detection performance or resource expense (e.g., memory

occupancy and detection accuracy). The distinct memory consumption of single estimator is presented in Table 1. The

details are as follows.
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Table 1. Memory costs for different estimators.

Estimator Memory Remark

Bitmap m m = n, n is the real
cardinality of flow

Linear Counter m mln (m) > n

LogLog 32 m Recommended as m = 128

Adaptive Counter 32 m Recommended as m = 128

HyperLogLog 5 m Recommended as m = 128

Some approaches encode the flow label information into a sketch and then enumerate the entire label space to recover

the candidate super spread. FAST  proposes an efficient data structure, namely, the fast sketch, which maintains

multiple arrays of HLL sketches. For each arriving item, it splits flow label 𝑓 into two parts. One part has been hashed to a

𝑑 HLL array, and in each array records the element in one HLL. In this way, it can not only polymerize packets into a small

number of flows but also further enable ISPs to discriminate the anomalous keys.

CDS  proposes a new data structure for locating the hosts associated with high connection degrees or significant

variations in connection degrees based on the reversible connection degree sketch. It constructs a compact summary of

host connection degrees, realizing an efficient and accurate analysis, and reconstructs the host addresses associated

with large fan-outs by a simple computation merely based on the characteristics of the Chinese Remainder Theorem.

Vector Bloom Filter , which is a variant of the standard bloom filter, improves the update efficiency significantly via bit-

extraction hashing. It can extract bits directly from the source ID and obtain the information of super spreads by using the

overlapping of hash bit strings.

The approaches given above can find and derive super spreads; however, the computational cost is too high to afford the

recovery of the flow label because the enormous flow label space and inaccuracy as an estimator have to be shared by

many flows.

Some other approaches separate the cardinality and the flow label using existing frequency-based sketches to return

high-frequency keys and use another data structure to store the flow label of the candidate super spread. cSkt 
extended the Count-Min sketch  with an external heap for tracking super spreads and associated each bucket with a

distinct cardinality estimator, which is simple and easy to implement.

OpenSketch , which offloads part of the measurement function to the data plane from the control plane, combined

reversible sketch  with bitmap algorithms. In the data plane, it provides a simple three-stage pipeline involving hashing,

filtering, and counting to implement measurement tasks of cardinality and flow labels. In the control plane, it provides a

measurement library to realize automatic configurations of the pipeline and resource allocation for different measurement

tasks.

And Liu  et al. combined Fast Sketch  with an optimal distinct counter for super spread detection. It designs a

reversible and mergeable data structure for a distributed network monitoring system, which means implementing network

traffic measurements at each local monitor and reporting high-cardinality hosts productively based on compressed

information, thus avoiding querying every single host in the network.

The approaches above can find and derive the super spreads; however, existing invertible frequency-based sketches, as

proposed above, have heavy processing overhead: either incurring high memory access overhead for heap updates or

inducing an unaffordable update overhead that grows linearly with the key size.

Among them, gmf , and SpreadSketch  are two of the state-of-the-art implementations. The core technologies

introduced by gmf are a generalized geometric counter, a generalized geometric hash function, and an innovative

geometric minimum filter that can eliminate duplication and block the vast majority of mice or small streams. Therefore,

after the original flow passes through the filter, only a small number of flows are tracked using the hash table. In this way,

gmf separates a super spread from the vast majority of small flows. This method greatly reduces memory usage, but

cannot accurately measure the cardinality of super spread.
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SpreadSketch can simultaneously measure the diffusion of a lot of traffic and distinguish the super spreads among them.

It extends the Count-Min  while replacing each counter with multi-resolution bitmaps, a label field, and a register .

The label field is used to record a flow label. However, if the cardinality of streams mapped to the same bucket is very

close, especially when memory is small, its detection is not accurate enough.

In conclusion, although the above methods have made some progress in super spread detection, they cannot meet the

requirements of accuracy and performance for super spread detection at the same time, especially when the cardinality of

a super spread is not significantly larger than other spreads and the available memory is small (less than 100 KB).

Besides, the cardinality they provide is not accurate enough.
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