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Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi,
bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and
pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative
properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell

and tissue cultures, rodent and nonhuman primate animal models, and human studies.
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| 1. Introduction
1.1. Oxidation and Antioxidation under Physiological and Pathological Conditions

Redox homeostasis is central to life, ranging from bioenergetics to metabolism and biological functions . To
defend against oxidative damage, organisms have evolved defenses that primarily rely on antioxidant enzymes,
the supply of their substrates and repairing the damage. Antioxidant defenses can be enhanced through
physiological signaling, dietary components and potential pharmaceutical interventions, thereby improving the
capacity to scavenge oxidants and electrophiles. In 1954, Commoner et al. first described the occurrence of
oxidative damage in a biological environment [2. In 1985, the concept of “oxidative stress” was first applied to the
biological logic system, which is defined as any oxidative damage in which excessive production of ROS or

inadequate antioxidant defense occurs 2!,

An imbalance between the production of oxidants and antioxidant defenses leads to damage to biological systems.
This involves the chemistry of reactions of reactive species derived from oxygen, so-called ‘oxidative stress.’
Oxidative stress has been shown to participate in a variety of diseases, including cardiovascular disease,
degenerative disease and cancer, and multiple mechanisms by which oxidants contribute to cellular damage have
been revealed B8 However, the degree of oxidative stress involved in the pathology of diseases is quite
variable. This variability makes it difficult to improve the antioxidant effects of therapy. Most of the antioxidant
defense in cells is provided not by either exogenous or endogenous small molecules acting as scavengers but by
antioxidant enzymes using their specific substrates to reduce oxidants. The therapeutic use of small molecules has
been disappointing, largely due to overoptimism and incorrect assumptions about how antioxidants work .
Furthermore, antioxidant enzymes react with oxidants thousands to millions of times faster than small molecules

and provide the predominant antioxidant defense [ Therefore, the major therapeutic opportunities lie in
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preventing the production of oxidants that directly damage macromolecules, inhibiting the downstream signaling of
oxidants that leads to inflammation or cell death, and increasing both antioxidant enzymes and their substrates.
Currently, clinical trials based on this approach are underway [l A greater understanding of the mechanisms of
action of antioxidants and where and when they are effective may provide a rational approach to addressing

oxidative stress.

1.2. Role of Oxidation and Antioxidation Based on the Complex Composition of
Natural Products

In the pharmaceutical industry, the approved medicinal products are mostly composed of a single molecule or
combinations of single molecules whose pharmacological properties and safety are characterized during the
preclinical phase and then validated in human trials . The plants, animals, fungi, bacteria and archaea are a
source of drugs of natural origin. Each of them contains hundreds of compounds, which belong to different
classifications, such as diterpenoid, flavonoid, coumarin, steroid, hydrocarbon, carboxylic acid, ester, aldehyde,
alcohol, ketone, ether, epoxide, phenol and so on 19, Although many approved drugs isolated from natural sources
have been proven to be involved in oxidation or antioxidation in experimental models and human studies 22, their
mechanisms of action are usually not yet fully elucidated since it is difficult to identify the effective compounds and
dosages. For example, researchers have demonstrated that Glycyrrhizae radix extract is beneficial in preventing
oxidative damage in Caenorhabditis elegans (C. elegans). However, this extract is a mixture of all water-soluble
compounds from Glycyrrhizae radix, so it is still unknown which compound plays an antioxidant role in this
protective effect 12, The composition of natural products is complex, thus posing a challenge to clarify their role in
the oxidation and antioxidation process clearly. Along with the improved sensitivity of trace detection techniques
(e.g., high-resolution mass spectrometry, instrumental neutron activation analysis, atomic absorption spectroscopy,
ultra-performance liquid chromatography), an increasing number of newly discovered compounds have been
isolated from natural products 22l By means of plane and spatial structure analysis methods (e.g., nuclear
magnetic resonance, atomic spectroscopy, circular dichroism spectrum, single crystal X-ray diffraction), the
structures of these novel compounds can be resolved, making it possible to reveal the oxidation and antioxidation

effects and mechanisms 2141[15],

1.3. Advantages of C. elegans as a Model of Oxidation and Antioxidation
Assessment

C. elegans was introduced to science as a model organism for development and neurobiology in 1965 18],
Nematodes share approximately 60-80% of genes and 12 signaling pathways with humans L7118l and notes on
gene function can be obtained from the WormBase online consortium. C. elegans shows many advantages, such
as self-fertilization, a short life cycle, a small and transparent body, ease of culture, simple operation and low cost,
without limitations in ethics, showing great potential as an alternative model for the 3R principle 2229 Despite their
simple structure, nematodes have complete muscle, subcutaneous tissue, nervous system, gut, gonads, glands
and excretory system, and many basic physiological processes and oxidative stress responses of higher

organisms are also highly conserved in nematodes 21221, Therefore, nematodes have great potential as models
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for evaluating the pharmacological and toxicological effects in humans [23] and researchers systematically
summarize the advantages and disadvantages of C. elegans in the pharmacotoxicology research field and
compare this model with other classical models, namely Drosophila, zebrafish, yeast, cell and mammalian in Table
1. In recent decades, nematodes have become very popular for high-throughput drug screening. This allows the
drug discovery process to be studied throughout the life cycle and the manipulation of individual genes or
genomes, such as N-ethyl-N-nitrosourea or ethyl methanesulfonate mutations, RNA interference (RNAIi) and
CRISPR [24, Nematodes have been applied to the mechanism of action of addictive drugs 22!, the pharmacological
effects of neurodegenerative diseases such as Alzheimer’s disease (AD) drugs [281 and the neurotoxicity of
anticancer drugs [Z. Currently, a large number of mutants have been used to study the molecular mechanism of
effective components of natural products. For example, ursolic acid affects the stress response of nematodes by
disturbing genes expressions of dopamine receptors 28129 as also applies in the toxicological mechanism of the
extract of Peganum harmala L. seeds 9, and the intestinal toxicity mechanism of Euphorbia factor L1 Bl etc. In
addition, there are many reports on the effectiveness of antioxidants in C. elegans, as they can be used to

establish an antioxidant stress response model for the assessment of antioxidant capacities in vivo [B2123]1341[35]

Table 1. Advantages and disadvantages in the pharmacotoxicology of C. elegans and other models.
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| 2. Establishment of Oxidative Stress Model in C. elegans

The lifespan of C. elegans is always proportional to its resistance to environmental stress, and stress resistance is
dominant in the lifespan of C. elegans 39 Under heat stress, cells show a heat shock response and induce gene
expression to prevent cell degeneration and enhance heat resistance. Heat shock experiments usually observe the
survival time of nematodes by placing them at a temperature higher than the suitable living environment for some
time. This index has been widely used to evaluate the protective effect of substances. For example, Lin et al.
exposed nematodes to traditional Chinese herbal tea for 4 days, transferred them to 35 °C and recorded death per
hour, indicating this treatment extended the average lifespan of nematodes significantly 49 The same method was
also used to evaluate the antistress effects of Cyclocarya paliurus polysaccharide leaf extract and piceatannol, and
the researchers came to similar conclusions 4142l There are also some different treatment methods in heat stress
experiments; for example, Lu et al. studied the protective effect of calycosin on nematodes under heat stress. On
the third day, adult nematodes were cultured at 36 °C for 4 h and then transferred to 20 °C, and their survival was
recorded every day 31,

The oxidative stress model of nematodes involves observing the survival of nematodes by exposing them to strong
oxidants. Paraquat is a common stimulator of oxidative stress. Nematodes were exposed to NGM plates containing

5-50 mM paraquat, and the survival rate was monitored every 12 h EAELE2E4] - Aternatively, the paraquat
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lethal juglone at 250 uM for 3 h, 300 uM for 1 h or 150 mM for 24 h, and then the survival rates of nematodes were
recorded [281(29]48][49]

The heat shock response in C. elegans has revealed three related neuroendocrine signaling pathways: the nuclear
hormone receptor pathway, transforming growth factor-B pathway and IGF/insulin-like signaling pathway (39,
Among them, the IIS pathway is the most thoroughly studied and has been demonstrated to play an important role
in the signaling regulation of oxidative stress in C. elegans. Lin et al. and Shen et al. proved that the improvement
of stress resistance mediated by phytomedicine was positively correlated with the activation of IS pathway 41142,
To investigate whether forkhead box protein O (DAF-16), a key regulator of antioxidation or heat stress, plays a
role in this process, the subcellular distribution of DAF-16 in the TJ356 mutant was observed. The transfer of DAF-
16 from the cytoplasm to the nucleus could be inhibited under stress %, The mechanism of Cyclocarya paliurus
(C. paliurus) polysaccharide enhancing nematode heat tolerance was related to heat shock transcription factor 1
(HSF-1) without affecting the expression of DAF-16 in TJ356 but changed the fluorescence expression of SOD-
3::GFP, and altered the expression of heat stress-related genes hsp-16.1 and hsp-16.2, suggesting that the HSF-1
pathway was necessary to improve heat tolerance. The longevity promoter skinhead-1 (SKN-1) regulates oxidative
stress resistance. Under H202-induced oxidative stress, C. paliurus polysaccharide did not shorten the longevity of

SKN-1 mutants, suggesting that the C. paliurus polysaccharide-mediated oxidative stress is dependent on SKN-1
a1,
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