
Application of Microbial Cell Factories
Subjects: Biotechnology & Applied Microbiology

Contributor: Rida Chaudhary, Ali Nawaz, Mireille Fouillaud, Laurent Dufossé, Ikram ul Haq, Hamid Mukhtar

Microbial cell factories are becoming a fundamental technology for pharmaceutical, food, and chemical industries to

satisfy the welfare of an increasing global population and socio-economic development. Microorganisms are used for the

production of various products, including carboxylic acids, amino acids, vitamins, enzymes, plant natural products,

carotenoids, biogas, and other biofuels. About 52% of FDA-approved chemical entities were naturally derived products

during the period of 1981–2006. The production of varied value-added macromolecules and metabolites was witnessed in

the last decade by microbial cell factories (MCFs), with titers changing from μg/L to mg/L. Moreover, the introduction of

metabolic engineering approaches improved the rate, titer, and yield of industrially vital compounds by manipulating the

host metabolism, physiology, stress response, carbon–energy balance, and the annihilation of an undesirable ATP sink.

Due to MCFs, the industrial biotechnology sector is increasing expeditiously, and numerous biocommodities are also in

production. 
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1. Carboxylic Acids

Carboxylic acids are considered as appealing bio-renewable chemicals due to their flexibility and utilization as precursors

for varied industrial chemicals. Currently, conventional chemical processes are used to achieve carboxylic acid synthesis

from petroleum resources. However, an excessive reliance on petrochemical-based raw materials and the requirement of

toxic metals, including organic solvents and heavy metal catalysts, have questioned the proficiency of chemical processes

in terms of exacerbating the environmental burden. As a result of these concerns, deriving carboxylic acids from

renewable microbial sources becomes apparent . Carboxylic acids can be produced by several microbial groups, for

instance, acetic acid production from A. cerevisiae, A. aceti, Gluconacetobacter liquefaciens, G. entanii,
Komagataeibacter intermedius, and K. hansenii , and the synthesis of succinic acid from Anaerobiospirillum
succiniciproducens, M. succiniciproducens, and Actinobacillus succinogenes . Acetic acid bacteria (AAB) play a major

role in the production of food and beverages, such as kombucha and vinegar . Butyric acid also has vast applications in

animal feed, food additives, perfumes, and varnishes. In nature, several Clostridium species synthesize butyric acid,

particularly, C. thermobutyricum, C. butyricum, C. pasteurianum., and C. acetobutylicum .

With the advancements in metabolic engineering, the production of carboxylic acids from metabolically engineered

microbial systems has gained much attention to achieve the desired yield and titer. Several non-conventionally

engineered microbes have been demonstrated as superior hosts for carboxylic acid biosynthesis. For instance, the

enhanced production of propionic acid, which is widely used as a food additive, antimicrobial preservative, and an

intermediate for producing polymers, pesticides, and flavorings, can be achieved by engineering P. acidipropionici sp.

CGMCC 1.2232 , P. freudenreichii subsp. Shermanii DSM 4902 , and P. jensenii sp. ATCC 4868 . The FDA has

designated several Propionibacterium species (derived from dairy goods) as generally regarded as safe (GRAS), electing

them as a suitable approach for producing propionic acid in the food industry . Lactic acid (2-hydroxypropanoic acid)

serves as an additive in the food, pharmaceutical, and textile industries. Moreover, it is also used as a synthetic

intermediate to manufacture biodegradable polymers . Lactic acid bacteria (LAB), including Lactobacilli and Lactococci
sp., are highly favored microbes for lactic acid biosynthesis and have achieved GRAS status as well . Engineering

microbial species of C. utilis  and L. lactis LM0230  also increased lactic acid production. Citric acid is broadly used

in the cosmetics, food, and detergent industries owing to its buffering characteristics, water solubility, and reduced toxicity.

Presently, microbial fermentation using Y. lipolytica and A. niger is being carried out for citric acid production on an

industrial scale . A. succinogens also produce succinic acid naturally ; however, several microbial strains can also be

metabolically engineered for enhanced production, such as engineering L. plantarum sp. NCIMB 8826 , C. glutamicum,

, and C. synechococcus elongates sp. PCC 7942 , which provide higher succinic acid yields. Succinic acid serves as

a precursor for preparing polyester, a surfactant, and several other valuable derivatives. Notably, succinic acid is among
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the few examples of biosynthesizing carboxylic acids by industrial manufacturers, for instance, Reverdia and BioAmber

successfully commercialized succinic acid, accounting for half of the global annual production .

2. Vitamins

Vitamins are essential nutrients that play a crucial role in maintaining optimal health and metabolic activities. Vitamins

show wide-ranging applications in the food, feed, cosmetics, and pharmaceutical industries. The requirement of

pressurized reactors and high temperatures, along with the safety concerns regarding increased pollution from hazardous

waste, have shifted the focus toward utilizing microbial sources instead of chemical synthesis methods for the production

of valuable vitamins . Several microbes serve as cell factories for this purpose, for instance, E. coli has emerged as a

preferred approach for the production of vitamin B1 (also known as thiamine), which has vast applications in preventing

skin inflammation and eczema . Furthermore, the emergence of synthetic biology and metabolic engineering

approaches has further strengthened the concept of utilizing microbial cell factories for the production of vitamins, such as

the increased yields of vitamin B1 and vitamin A (β-carotene), which can be attained from A. oryzae and Y. lipolytica by

overexpressing genes and heterologous enzymes , respectively. L-ascorbic acid (LAA), also known as vitamin C,

can also be produced from several microbial species. Vitamin C is an antioxidant and also acts as a significant co-factor in

multiple reactions that occur in the body. LAA is presently manufactured commercially by utilizing B. megaterium and G.
oxydans . P. shermanii, and P. denitrificans produce cobalamin (vitamin B12), while vitamin K can be attained from

Sinorhizobium meliloti, B. subtilis . Recently, MK-7, which is an effective subtype of vitamin K produced from B.
subtilis natto, became an FDA certified-safe food . From the perspectives of the absorption rate, biological activity, and

safety concerns, the biological synthesis of vitamins by using microbial strains is a promising approach for achieving a

significant yield improvement of vitamins.

3. Amino Acids

Amino acids serve as attractive metabolites in the food industry and pharmaceutical fields. They also play a role in

enhancing flavor formation in several fermented foods. At present, C. glutamicum, P. ananatis, and E. coli are extensively

utilized host bacterial strains for the industrial production of amino acids. Moreover, a glutamate secreting bacterial isolate,

C. glutamicum, is a preferred bacterium to be exploited in engineering approaches for the increased production of lysine,

glutamate, and flavor-active amino acids at vast scales . Lysine and valine are two vital amino acids with varied

applications. Lysine is an essential amino acid and is used as a feed additive, with a market size reaching around 1 million

tons per annum , while valine, a branched amino acid, is an essential nutrient for animals. Valine is also utilized as a

raw material for the production of various herbicides and drugs, with an annual fermentative production of 500 tons . E.
coli and C. glutamicum are considered as the most powerful industrial microbes for both lysine and valine production 

. Considering the fact that industrial processes often operate at high temperatures, thermotolerant microbes have

also been developed. For instance, thermotolerant bacteria, C. efficiens and B. methanolicus, are being developed as

lysine producers . Another semi-essential amino acid, L-Arginine (L-Arg), has widespread applications in the

pharmaceutical industry as it promotes the secretion of insulin, growth hormones, and prolactin . Several engineered

microbes, including B. subtilis, E. coli, C. glutamicum, S. cerevisiae, and C. crenatum, have been used as model

organisms for achieving L-Arg overproduction . Moreover, L-ornithine has also been synthesized by a high-glutamate-

producing strain, C. glutamicum S9114, through pathway engineering . L-Ornithine is a non-protein amino acid and is

universally used for the treatment of trauma and liver protection, in addition to strengthening the heart. High-level L-

ornithine production is also achieved by carrying out modular pathway rewiring . Constructing microbial workhorses on

a large scale aims at satisfying the demand for amino acids as bulk biochemicals. Moreover, amino acid secretion from

microbial sources is economically and industrially relevant to biotechnological fermentation processes, as it involves the

simplified extraction and purification of metabolites.

4. Plant Natural Products

Plant natural products exhibit significant pharmacological activities and have widespread utilization in healthcare products,

food additives, and cosmetics. Most PNPs are extracted from cultivated plants; however, the yield is restricted due to

complex processing steps, a long growth cycle, climate change, and seasonal availability, making the process quite

unsustainable. Moreover, a complex PNP structure also affects its chemical synthesis efficiency . With the development

of modern approaches, the biosynthesis of PNPs from microbial alternatives has gained considerable attention. Several

microbial species have been utilized for PNP production, including artemisinin, resveratrol, and many carotenoids as well.

Artemisinin is referred to as an effective pharmaceutical compound for treating malaria. It is naturally synthesized by plant

A. annua; however, the concentration obtained from the plant source is very low, i.e., 0.01–1.1%, and improving the yield
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through total organic synthesis or plant breeding remains a contest, shifting the focus toward production via microbial

sources . Several microbial strains have been genetically engineered for its production. For meeting large-scale

demands, the de novo reconstitution of artemisinin biosynthesis in heterologous microbes, including S. cerevisiae and E.
coli, has noteworthy achievements, for instance, engineering the carbon flux and genotype of S. cerevisiae yields high

quantities of artemisinic acid. Moreover, S. cerevisiae has also demonstrated itself as a heterologous host for producing

artemisinin precursors, such as artemisinic acid, dihydro-artemisinic acid, and amorphadiene .

Resveratrol is a polyphenolic compound and is also found in various plant species, such as peanuts, grapes, cranberries,

and bush berries. It also exhibits wide applications in the cosmetic, health, and medicine industries, and is reported to

reduce the risks of cancer, heart diseases, and diabetes . It is among the fastest-growing nutritional supplements in the

flavonoid market . Like artemisinin, the resveratrol concentration in plants is limited and is commercially unsustainable

as well. Engineered strains of E. coli and budding yeast S. cerevisiae result in increased resveratrol titers by the

introduction or modification of STS enzymes (stilbene synthase) . Evolva has effectively developed the production of

resveratrol on an industrial scale by utilizing a yeast cell factory . The two strains serve as platform organisms and

excellent hosts for the production of a wide array of PNPs, such as isoprenoids (l-histidine, l-phenylalanine, and l-

tyrosine), phenylpropanoids (flavonoids, coumarins, and lignans), and alkaloids (carotenoids and sterols) . Although the

eco-friendly and resource-conserving synthesis of PNPs has gained much attention, several challenges are associated

with this approach as well, regarding their large-scale application. Moreover, a low enzyme catalytic activity, poor

precursor supply, and unknown PNP biosynthesis pathways have limited the heterologous production of microorganisms

due to the high fermentative costs .

5. Carotenoids

Carotenoids are lipid-soluble, naturally occurring pigments and are widely used in industries owing to their antioxidant

activities and capacity as natural colorants . By the year 2025, the carotenoids global market is anticipated to reach

USD 1.68 billion . Photosynthetic cyanobacteria serve as natural microbial factories for the synthesis of carotenoid

pigments as cellular antioxidants. Many successful demonstrations have also been reported for genetically engineering

cyanobacteria to achieve an improved carotenoid content . At the industrial scale, the filamentous fungi Phycomyces
blakesleeanus and Blakeslea trispora serve as potential candidates for carotenoid production . Moreover, other

carotenogenic microbes, including Haematococcus pluvialis and X. dendrorhous, have also been widely exploited in

large-scale processes. Moreover, transforming carotenoid genes in non-carotenogenic microbes, such as C. utilis, E. coli,
S. cerevisiae, and Zymomonas mobilis, can elevate carotenoid production levels . Several recombinant or engineered

microbes also demonstrated the successful production of carotenoids, including recombinant S. elongatus sp. PCC 7942

, Planococcus faecalis , Halobacillus halophilus , B. indicus, and B. firmus .

Cyanobacteria produce a diverse range of metabolites in the carotenoid biosynthetic pathway, and zeaxanthin is among

these principal carotenoids. Zeaxanthin is a naturally occurring xanthophyll carotenoid and is widely produced by algae,

plants, and microorganisms. It is utilized in the food, nutraceutical, and pharmaceutical industries due to its antioxidant

and anti-cancer properties. Moreover, it also plays a critical role in preventing cataracts and macular degeneration. Many

bacterial isolates, predominantly belonging to the Paracoccus and Flavobacterium genera, demonstrate the active

accumulation of zeaxanthin. The Flavobacteriaceae family primarily comprises zeaxanthin-producing bacteria, including

Kordia aquimaris sp. CC-AMZ-301T 150 , Aquibacter zeaxanthinifaciens sp. CC-AMZ-304T 151 , G. oceani sp. CC-

AMSZ-TT 152 , and G. planctonica sp. CC-AMWZ-3T 153 . Also, non-photosynthetic Flavobacterium sp. produces

an abundant amount of zeaxanthin, accounting for 95% of total carotenoid production .

Another carotenoid, astaxanthin, can also be produced from microbial workhorses. Astaxanthin is an ideal source of

pigmentation in the food and aquaculture industries. It also exhibits several health benefits owing to its anti-inflammatory,

anti-cancer, antioxidant, and neuroprotective activities . Several microbial strains serve as cell factories for astaxanthin

biosynthesis, such as Brevundimonas sp. , Paracoccus sp. , and Sphingomonas sp. . Among yeast species, X.
dendrorhous is a major astaxanthin producer . Metabolic engineering has developed potential commercial interests in

enhancing carotenoids’ yield and titer to attain sustainable production. As an instance, E. coli and S. cerevisiae have also

been exploited as cell factories for astaxanthin production by carrying out modular engineering and the membrane-fused

expression of β-carotene hydroxylase . Another xanthophyll pigment, i.e., lutein, can also be biosynthesized in S.
cerevisiae. The lutein pigment is widely used in aquaculture, healthcare, food processing, and poultry farming industries

. The production of carotenoids by microbes provides an insight into the economically viable, environmentally friendly,

and renewable production of natural products, depicting the industrial viability of MCFs for carotenoid biosynthesis.
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6. Flavors and Fragrances

In addition to several valuable chemicals, flavor and aroma compounds are also synthesized by MCFs, which include

indole, terpenoids, β-Ionone, geraniol, 3-phenylpropanol, vanillin, and patchoulol. The global flavor and fragrance market

was valued at USD 28,193.1 million in 2019 and is anticipated to achieve USD 35,914.3 million by 2027 with a CAGR of

4.7% . Moreover, the cosmetic industry has presented an even higher market value and is expected to reach USD

363.80 billion by 2030 . Thus, the inclination toward utilizing natural and sustainable products drives the focus of

ingredient and fragrance firms toward finding alternative sources to create natural products, i.e., microbial biosynthesis

.

Indole is a nitrogen-containing aromatic compound and is famed for its jasmine-like floral odor . Corynebacterium
strains display the sustainable production of indole from tryptophan to achieve industrially pertinent indole titers .

Terpenoids are vital aroma components for perfumery and flavor products. β-Ionone, a fragrant terpenoid, possesses a

pleasing floral scent. Microbial fermentation using GRAS species, such as Y. lipolytica, is an effective approach for β-

Ionone production as it is oleaginous, economically viable, and a sustainable natural aroma compound . Several

monoterpenoids can be generated by using recombinant microbial strains, for instance, the metabolic engineering of P.
putida to produce geranic acid. Geraniol is an acyclic monoterpene alcohol and it is a standard constituent of many

fragrance and flavor products. E. coli engineering for expressing the heterologous mevalonate pathway can result in an

increased titer of geraniol . E. coli cells have also been engineered to produce 3-Phenylpropanol and vanillin. Both

flavor compounds are used in the beverages, food, fragrance, and cosmetic industries . Moreover, patchoulol is a

naturally occurring sesquiterpene and is found naturally in Pogostemon cablin. It has a wide range of applications in

cosmetics and daily use products, including shampoo, hair spray, perfumes, and essential oils. Its limited production from

natural resources shifted the focus toward engineered microbes, such as mitochondria-engineered yeast cells (S.
cerevisise), which reported the elevated production of patchoulol . Thus, a consequential upsurge in aroma chemicals

requires efficient renewable production strategies. For this purpose, biotechnological production from microbial sources is

regarded as the best alternative to generate flavor and fragrant molecules .

7. Bioenergy

Increasing energy and food demands, the deterioration of the environment, and climate change are the major challenges

of this era. Among several other natural sources, biofuels also have immense potential to harmonize the trilemma of food,

energy, and environment. Using MCFs for the production of bioenergy is not a new concept, yet it has received great

attention for creating novel bioproducts with better productivity rates . Several microbes serve as bioenergy sources,

such as the production of 1-butanol, which is a potential fuel and chemical feedstock, by both native and engineered

Clostridium species , and bioethanol production from Pichia stipites sp., C. albicans, and S. cerevisiae sp. KL17 

. Apart from fuels, microbes also serve as factories for biogas and biohydrogen production. Methanogens are integral

to biogas production and high-performance methanogens include Methanocaldococcoccus jannaschii and the

methanococci Methanotorris igneus . Methanogens can also be employed as autobiocatalysts for converting molecular

hydrogen (H ) and carbon dioxide (CO ) to biological CO -based methane, also referred to as the CO -BMP process. This

process has varied applications, comprising the decentralized production of energy, power-to-gas applications, and biogas

upgrading . The most studied microbe for this purpose is Methanothermobacter marburgensis. It has several

advantages, including flexibility toward substrate gas impurities and elevated CH  productivity rates . Biohydrogen is

also an environmentally benign fuel, having no CO  emissions during combustion. It can be produced by the biological

conversion processes of photofermentation and dark fermentation. Several microbes can be utilized for biohydrogen

production, including Caldicellulosiruptor saccharolyticus , Desulfurococcus amylolyticus DSM 16532, and

Rhodobacter sphaeroides . Moreover, biodiesel, a derivative of fatty acids, such as methyl, ethyl, or propyl esters (fatty

acid methyl esters (FAMEs), fatty acid ethyl esters (FAEEs), and fatty acid propyl esters (FAPEs)) has an annual

consumption rate of 2 billion gallons. Several studies have reported the engineered E. coli strain as an effective microbial

source for producing structurally tailored fatty esters (i.e., biodiesel) 

The metabolic engineering of microbes has led to the production of next-generation biofuels. The biofuel molecules with

petroleum replica structures exhibit greater advantages than others as they possess elevated energy densities and can

also be utilized as drop-in fuels because of no modification requirements in the internal combustion engines, destined for

petro-diesel and gasoline . These biofuels are referred to as fourth-generation (4G) or advanced biofuels. Few

microorganisms naturally produce such biofuels, for example, the production of butanol from B. subtilis, P. putida, and

Clostridium species. . However, at times, these native producers face limitations in terms of their slow growth rates, low

production titers, and the overall yield of the product. Moreover, it is also a challenge to engineer native microbes because

of ineffective genetic elements, the unidentified endogenous regulation of synthetic pathways, redox potential, cellular
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toxicity, and the presence of inhibitors. Metabolic pathway engineering impels the need to reconstruct biofuel biosynthesis

in genetically tractable microbes to carry out the heterologous synthesis of 4G biofuels . The point mutation of the cydC

gene in E. coli has the capacity to completely restore the production of D-limonene and biogasoline, along with the

platform chemical isopentenol .

MCFs are attracting considerable attention as next-generation energy sources because of their intended use for

recovering energy in the form of electricity. Microbial fuel cells convert solar or chemical energy to electrical energy by

utilizing microbial cell factories as catalysts . Several electricigens are used for MFCs’ construction as pure cultures,

including Natrialba magadii, Haloferax volcanii, R. sphaeroides , Rhodospirillum rubrum , and Acidiphilium cryptum
. However, pure cultures mandate the requirement of strict operating settings and selective substrates. Therefore, using

miscellaneous consortiums as anodic biocatalysts is a preferred approach, as mixed communities are highly suitable for

complex substrates as well. Several co-cultured electricigens reported high peak densities, including co-cultures of

Geobacter sulfurreducens + C. cellulolyticum , Klebsiella pneumonia + Lipomyces starkeyi , and P. aeruginosa +
K. variicola , demonstrating the potential of mixed cultures for effective electricity generation.
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