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In mobile systems, fog, rain, snow, haze, and sun glare are natural phenomena that can be very dangerous for drivers. In

addition to the visibility problem, the driver must face also the choice of speed while driving. The main effects of fog are a

decrease in contrast and a fade of color. Rain and snow cause also high perturbation for the driver while glare caused by

the sun or by other traffic participants can be very dangerous even for a short period. In the field of autonomous vehicles,

visibility is of the utmost importance. To solve this problem, different researchers have approached and offered varied

solutions and methods. It is useful to focus on what has been presented in the scientific literature over the past ten years

relative to these concerns. 
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1. Introduction

Adapting vehicle speed to environmental conditions is the main way to reduce the number of accidents on public roads .

Bad visibility caused by the weather conditions while driving proved to be one of the main factors of accidents . The

research from the last decade came with different features to help the drivers, such as redesigning the headlights by using

LED or laser devices or improving the directivity of the beam in real time; with these new technologies, the emitted light is

closer to the natural one . In addition, they also introduced a new feature, auto-dimming technologies being already

installed on most of the high-end vehicles . In case of fog, unfortunately, this is not enough, and up until now, no reliable

and robust system was developed to be installed on a commercial vehicle. There were approaches based on image

processing by detecting lane marking, traffic signs, or hazards such as obstacles , image dehazing and deblurring ,

image segmentation, or machine learning methods . Other methods are based on evaluating the optical power of a

light source in direct transmission or backscattering, by analyzing the scattering and dispersion of the beam . There

are approaches that are using systems already installed on the vehicle such as ADAS (Advanced Driver Assistant

Systems), LIDAR (LIght Detection And Ranging), radar, cameras, or different sensors  and even geostationary

satellite approaches . While imaging sensors output reliable results in good weather conditions, their efficiency is

decreasing in bad weather conditions such as fog, rain, snow, or glare of the sun.

The biggest companies around the world are working these years to develop a technology that will completely change

driving, the autonomous vehicle . When this will be rolled out in public ways, the expectation will be for crashes to

decrease considerably. However, let us think about how an autonomous vehicle will behave in bad weather conditions:

loss of vehicle adherence, problems on vehicle stability, and maybe the most important fact is related to the decrease or

lack of visibility: non-visible traffic signs and lane markings, non-identifiable pedestrian , objects or vehicles on its way

, lack of visibility due to sun glare , etc. We have also the example of the autonomous vehicle developed by Google,

which failed the tests in bad weather conditions in 2014. Now, the deadline for rolling out the autonomous vehicle is very

close; 2020 was already announced by many companies, and they must find a proper solution for these problems

because these vehicles will take decision exclusively based on the inputs obtained from the cameras and sensors or in

case of doubts will hand over the vehicle control to the driver.

In the next decades, there will be a transition period; on the public roads, there will be autonomous vehicles but also

vehicles controlled by the drivers; as drivers’ reactions are unpredictable, these systems will have to have an extremely

short evaluation and reaction time to avoid possible accidents. Based upon this reasoning visibility estimation and the

general improvement of visibility remain viable fields of study, we did a study on the state of the research for papers that

use image processing as the means to estimate visibility in fog conditions, thus increasing general traffic safety.

Figure 1 presents an overview of the field, starting from the main methods from the state of the art, visibility enhancement

(2), and fog detection (3), following by systems and sensors (4) that use the methods proposed in the first two subsections

to detect visibility in adverse weather conditions and ending by presenting the human observer’s reactions in such

conditions (5).
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Figure 1. Overall structure.

Basically, in the first category, the methods are based on image processing, while in the second one, they are based on

optical power measurements or image processing. In the next sections, the most known and used methods from these

two broad categories will be detailed. The goal of this work is to present the advantages but also the weaknesses of every

method to identify new ways of improvement. Afterwards, as it is stated in the figure below, we propose a mix of methods

with the scope of counterbalancing the shortages of a method with the other one. The final step will be to check if the

results obtained from such a system are valid for human beings and additionally usable by autonomous vehicles.

2. Visibility Enhancement Methods

In the last decade, there was a great interest in the area of improving visibility in bad weather conditions and especially in

foggy conditions. The methods are based on image processing algorithms and can be split into two categories: image

processing using a single input image (one of the first approaches was presented by Tarel and Hautiere in ( ) and using

multiple images ( ) as input. Taking multiple input images of the same scene is usually impractical in several real

applications; that is why single image haze removal has recently received much attention.

3. Fog Detection and Visibility Estimation Methods

In the previous section, we mentioned Hautière and He as pilots for the field of image dehazing; now, one of the most

relevant works for vision in the atmosphere is the work of Nayar and Narasimhan , which is based on reputed research

of Middleton  and McCartney .

Most of the approaches for detecting fog and determining its density for visibility estimation are based on optical power

measurements (OPM), but there are also image processing approaches. The basic principle of the methods from the first

category is the fact that infrared or light pulses emitted in the atmosphere are scattered and absorbed by the fog particles

and molecules, resulting in an attenuation of the optical power. Methods of detecting the attenuation degree are by

measuring the optical power after the light beam passed a layer of fog (direct transmission) or by measuring the reflected

light when the light beam is backscattered by the fog layer. Figure 2 provides an overview of optical power measurement

methods.

Figure 2. Optical power measurement methods.

 

4. Sensors and Systems for Fog Detection and Visibility Enhancement

Nowadays, vehicles are equipped with plenty of cameras and sensors desired for some specific functionalities that might

be used also for fog detection and visibility improvements. For example, Tesla Model S has only for the autopilot
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functionality 8 surround cameras, 12 ultrasonic sensors, and forward-facing radar with enhanced processing capabilities.

5. Conclusions

This paper presented methods and systems from the scientific literature related to fog detection and visibility

enhancement in foggy conditions that appeared over the past ten years. In the next period, the main focus of the

automotive companies will be the development of autonomous vehicles, and visibility requirements in bad weather

conditions will be of high importance. The actual methods from the state of the art are based on image processing, optical

power measurements, or based on different sensors, some of them already available on actual commercial vehicles but

used for different functionalities. The image processing methods are based on cameras, which are devices that have a lot

of advantages such as freedom of implementing different algorithms, versatility, or costs, but on the other hand, the results

obtained from such a system can be erroneous due to blindness caused by other traffic participants, environment, or

weather. Methods based on image processing can be applied for low fog conditions; if fog becomes denser, the system is

not able to give any valid output. Some methods presented in the literature work only in day conditions, making them

unusable for automotive applications that require systems able to offer reliable results in real time and complex scenarios

24 h/day.

Focusing on the fact that images are degraded in foggy or hazy conditions, the degradation depends on the distance, the

density of the atmospheric particles, and the wavelength. The authors in  tested multiple single image dehazing

algorithms and performed an evaluation based on two strategies: one based on the analysis of state-of-the-art metrics

and the other one based on psychophysical experiments. The results of the study suggest that the higher the wavelength

within the visible range, the higher the quality of the dehazed images. The methods tested during the experiments were

dark channel prior , Tarel method , Meng method , DehazeNet method , and Berman method . The

presented work emphasizes the fact that there is no method that is superior to every single metric; therefore, the best

algorithm would vary according to the selected metric. The results of the subjective analysis revealed the fact that the

observers preferred the output of the Berman algorithm. The main conclusion is that it is very important to set the correct

expectations that will lead to a selection of some metrics and then, based on that, a dehazing algorithm can be preferred.

Systems based on optical power measurement, by direct transmission or backscattering, improve some of the drawbacks

described above for cameras: the result is not influenced by day or night conditions, can measure also very dense fog,

and the computational complexity is lower comparing to the previous category, making them more sensitive to very quick

changes in the environment, which is important in real-time applications. The results obtained using such systems can be

also erroneous, due to environmental conditions (bridges, road curves) or traffic participants; that is why our conclusion

after gathering all these methods and systems in a single paper is that at least two different systems shall be

interconnected to validate the results of each other.

One big challenge, from our point of view, for the next years in this field is to prove that the results obtained from the

systems presented above are valid for a human being. The validity of the results is a relevant topic also for autonomous

vehicles that need to identity the road, objects, other vehicles, and traffic signs in bad weather conditions, and the

automotive companies shall define the visibility limit for these vehicles.

The evaluation of the state-of-the-art methods is presented in Table 1.

Table 1. Evaluation of the state-of-the-art methods.
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Methods

Evaluation Criteria

Computation
Complexity

Availability
on
Vehicles

Data
Processing
Speed

Day/Night
Use

Real-
Time
Use

Result
Distribution Reliable

Link to
Visual
Accuracy

Image
dehazing

Koschmieder’s
law Medium/High Partial

(camera) Medium Daytime
only Yes Local for 1

user
No (not for
all inputs) Yes

Dark channel
prior

High Partial
(camera) Medium Daytime

only Yes Local for 1
user

No (not for
all inputs) Yes

Dark channel
prior

integrated in
SIDE

High Partial
(camera) Medium Both Yes Local for 1

user Yes Yes

Image
segmentation
using single
input image

High Partial
(camera) Low Daytime

only No Local for 1
user No Yes

Image
segmentation
using multiple
input images

High Partial
(camera) Medium Daytime

only

Yes
(notify

drivers)

Local for
many users
(highways)

No (not for
all cases) Yes

Learning-
based

methods I High Partial
(camera) Medium Daytime

only No
Local for

many users
(highways)

Depends
on the

training
data

No

Learning-
based

methods II High No Medium Daytime
only No Large area

Depends
on the

training
data

Yes

Learning-
based

methods III High Partial
(camera) Medium Daytime

only No Local for 1
user

Depends
on the

training
data

Yes

Learning-
based

methods IV High

Partial
(camera +

extra
hardware)

High Daytime
only Yes Local for 1

user

Depends
on the

training
data

Yes

Learning-
based

methods V High Partial
(camera) High Both Yes Local for 1

user

Depends
on the

training
data

Yes
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Methods

Evaluation Criteria

Computation
Complexity

Availability
on
Vehicles

Data
Processing
Speed

Day/Night
Use

Real-
Time
Use

Result
Distribution Reliable

Link to
Visual
Accuracy

Fog
detection

and
visibility

estimation

Direct
transmission
measurement Low No High Both Yes

Local for
many users
(highways)

Yes

No
(still

need to
prove)

Backscattering
measurement I Low Partial

(LIDAR) High Both Yes
Local for 1

or many
users

Yes

No
(still

need to
prove)

Backscattering
measurement

II Medium No Medium Both Yes
Local for 1

or many
users

No Yes

Global feature
image-based

analysis Medium Partial
(camera) Low Both No Local for 1

user No Yes
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Methods

Evaluation Criteria

Computation
Complexity

Availability
on
Vehicles

Data
Processing
Speed

Day/Night
Use

Real-
Time
Use

Result
Distribution Reliable

Link to
Visual
Accuracy

Sensors
and

Systems

Camera +
LIDAR High

Partial
(High-end
vehicles)

High Both Yes
Local for 1

or many
users

Yes Yes

Learning
based

methods +
LIDAR

High Partial
(LIDAR) Medium Both Yes Local for 1

user

Depends
on the

training
data

Yes

Radar Medium
Partial

(High-end
vehicles)

High Both Yes
Local for 1

or many
users

No (need
to be

prove in
complex

scenarios)

Yes

Highway static
system (laser) Medium

No
(static

system)
Medium Both Yes

Local (can
be extend
to a larger

area)

Yes

No
(still

need to
prove)

Motion
detection

static system Medium
No

(static
system)

Medium Day Yes
Local for 1

or many
users

No
(not for all

cases)
Yes

Camera based
static system High

No
(static

system)
Medium Both Yes

Local for 1
or many

users

Depends
on the

training
data

Yes

Satellite-based
system I High

No
(satellite-

based
system)

Medium Night Yes Large area Yes Yes

Satellite-based
system II High

No
(satellite-

based
system)

Medium Both Yes Large area Yes Yes

Wireless
sensor

network High
No

(static
system)

Medium Both Yes Large area

No
(not tested

in real
conditions)

No

Visibility Meter
(camera) Medium - Medium Day time

only No
Local for

many users
(highways)

No
(not tested

in real
conditions)

No

Fog sensor
(LWC, particle

surface,
visibility)

Medium No
(PVM-100) Medium Both -

Local for
many users
(highways)

No
(error rate

~20%)
No

Fog sensor
(density,

temperature,
humidity)

Medium No Low Both No
Local for

many users
(highways)

No No

Fog sensor
(particle size—

laser and
camera)

High
Partial

(High-end
vehicles)

High Day time
only No

Local for
many users
(highways)

No No

Based on the evaluation criteria listed in the table above (Table 1), we can conclude that a system able to determine and

improve visibility in a foggy environment shall include a camera and a device able to make optical measurements in the

atmosphere. Both categories have their drawbacks, but putting them together, most of the gaps can be covered; every
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subsystem can work as a backup and can validate the result offered by the other one. An example can be a system

composed of a camera and a LIDAR such as in ; both systems are already available on nowadays high-end vehicles,

offering reliable results, in real-time, 24 h/day. The results obtained from a vehicle can be shared with other traffic

participants from that area, in this way creating a network of systems. The direction of improvement for such a system

would be to increase the detection range for LIDARs and to use infrared cameras that can offer reliable results in night

conditions and to validate the results obtained from the LIDAR.

This synthesis can be a starting point for developing a reliable system for fog detection and visibility improvement, by

presenting the weaknesses of the methods from the state of the art (the referenced articles have more than 30,000

citations in Google Scholar), which can lead to some new ideas of improving them. Additionally, we described ways of

interconnecting these systems to get more robust and reliable results.
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