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The development of reliable predictive models for individual cancer cell lines to identify an optimal cancer drug is a

crucial step to accelerate personalized medicine, but vast differences in cancer cell lines and drug characteristics

make it quite challenging to develop predictive models that result in high predictive power and explain the similarity

of cell lines or drugs.
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1. Introduction

Recent significant advances in investigating drug sensitivity have been driven by advances in high-throughput

technologies that can generate large amounts of biological data at low cost. Pioneers of such datasets include the

NCI-60 database , Genomics of Drug Sensitivity in Cancer (GDSC) project , and Cancer Cell Line

Encyclopedia (CCLE) project . Collectively, these databases have demonstrated that pharmacogenomic profiling

of cancer cell lines from clinical tumor samples can help guide the development of new cancer therapies . The

NCI-60 project is one of the first established studies for in vitro drug screening, and has significantly improved the

philosophy and research of human cancer drugs . This panel has led to many important discoveries, including a

general advance in understanding the underlying mechanisms of cancer in response to drugs . However, the

panel only consists of 60 cell lines, which limits its use for developing reliable predictive models. By contrast, the

GDSC database (http://www.cancerRxgene.org, accessed on 9 December 2021), on which researchers focus in

this entry, annotates a comprehensive landscape of drug responses of ∼1000 human cancer cell lines for 265 anti-

cancer drugs. Importantly, the genomic and transcriptomic profiles of all cancer cell lines employed in GDSC were

extensively characterized as a part of the COSMIC cell line project (CCLP, https://cancer.sanger.ac.uk, accessed

on 9 December 2021). These resources have the potential to link anti-cancer drug sensitivity to detailed genomic

information and facilitate the discovery of relevant molecular biomarkers when coupled with powerful analytical

tools to cope with the high-dimensionality and complexity of these datasets.

A variety of approaches have been proposed for investigating drug sensitivity in cancer cell lines. One of the first

models was developed by Staunton et al., which employed a weighted voting classification model for anti-cancer

drug sensitivity based on NCI-60 gene-expression data . Recent approaches can be grouped either as

regression models to predict the concentration required for inhibition, or classification prediction models of drug

responses as sensitive vs. resistant , or a mathematical modeling approach . Machine learning tools

deployed include support vector machines , random forests , neural networks , and logistic ridge
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regression . For example, Riddick et al. built an ensemble regression model with random forest to predict in vitro

drug responses using gene-expression profiles .

2. Clustering of Cell Lines and Drugs

Hierarchical clustering of the cell lines resulted in six clusters with the highest average silhouette score. The

numbers of cell lines in each cluster were 149, 113, 130, 174, 208, and 141, respectively, labeled clusters 1

through 6. Figure 1 illustrates the results of clustering for 17 major cancer types. As shown in Figure 1, cluster 1

perfectly grouped the liquid cancers of leukemia and lymphoma, including only one solid tumor cell-line. It is well

known that liquid tumors respond very differently to anti-cancer drugs compared to solid neoplasms .

Interestingly, some clusters, such as cluster 5, consisted of heterogeneous cancer types, perhaps indicating a

closer relationship in drug responses. On the other hand, hierarchical clustering of the drugs resulted in 5 clusters.

The numbers of drugs in each cluster were 10, 23, 86, 26, and 55, respectively, labeled clusters 1 through 5.

Figure 1. The clustering results of cell lines for the major 17 cancer types. The sidebar indicates the number of cell

lines in each element.

3. Prediction of Drug Responses in Paired Cell-Line Drug
Clusters

For each of the 30 paired clusters (six clusters for cell lines and five clusters for drugs), random forest regression

models were trained and validated, using 635 genes and 165 cheminformatic features. A three-fold cross-validation

approach was employed, such that in each cross validation, 2/3 of the data were used for training, and 1/3 of the

data were used for validation of the model. After performing the three-fold cross validation in each paired cluster,

correlation (R) and coefficient of determination (R ) values were computed for the predicted and observed

log(IC50) values. Figure 2 illustrates the distribution of R and R  of the predicted and observed log(IC50) values in

the 30 paired clusters of cell lines and drugs.
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Figure 2. The distribution of correlation (R) and coefficient of determination (R ) of the predicted and observed

log(IC50) values in the 30 paired clusters of cell lines and drugs. The average values of R and R  were 0.88 and

0.78, respectively.

To evaluate the performance of prediction for the whole dataset, researchers concatenated the predicted and

observed log(IC50) values for all the 30 clusters and then calculated R and R  (Table 1). For comparison, they also

performed a three-fold cross validation scheme via random forest on the whole dataset without prior clustering. As

shown in Table 1, the method using prior clustering of cell lines and drugs resulted in prediction accuracies of R =

0.89 and R  = 0.79, outperforming the modeling results (R = 0.77 and R  = 0.60) obtained via random forest on the

whole dataset (183,000 cell-line drug pairs) using a three-fold cross validation scheme. Further, R and R  in the

best and worst paired clusters with respect to prediction accuracies were (R = 0.96 and R  = 0.93) and (R = 0.79

and R  = 0.62), respectively (Figure 3). The cell-line cluster 3 and drug cluster 1 pair, shown in Figure 4A,

achieved the best accuracy. This cluster mainly consisted of glioma and melanoma (Figure 1). In addition, the cell-

line drug complex network (CDCN) model coupled with the Wasserstein distance outperformed the model using

Pearson correlation.
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Figure 3. The best (red) and worst (blue) clusters among the 30 paired clusters with respect to prediction accuracy.

The best prediction lies in the pair of cell-line cluster 3 (mainly glioma and melanoma) and drug cluster 1. The

worst prediction lies in the pair of cell-line cluster 6 (mainly consisting of breast, head and neck, large intestine, and

stomach cancers) and drug cluster 5.

Figure 4. Overview of the network-based clustering and modeling of drug responses: (A) For clustering of cell

lines, the gene-expression profiles for 915 cell lines were analyzed on the HPRD network. Invariant measures for

individual nodes were then computed, and the Wasserstein distance (EMD) was computed between each pair of

cell lines on the network. Lastly, hierarchical clustering was performed on the resultant Wasserstein distance
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matrix. For clustering of drugs, researchers obtained the cheminformatic features of 200 drugs, and built a data-

driven network of cheminformatic features using the graphical LASSO. Similar to cell lines, hierarchical clustering

was performed on the resultant Wasserstein distance matrix; (B) A random forest model was built on each paired

cluster of cell lines and drugs to predict drug responses in log(IC50) values.

Table 1. Performance comparison of four different models. CDCN: Cell-line drug complex network; WD:

Wasserstein distance.

Models R R

a. Random forest using prior WD-based clustering 0.89 0.79

b. CDCN model with WD 0.86 0.59

c. Random forest on the whole data 0.77 0.60

d. CDCN model with Pearson correlation 0.74 0.53

After applying the modeling pipeline, researchers investigated the prediction accuracy for individual cell lines and

drugs. Figure 5A,B illustrate prediction performance for the cell lines and drugs with the highest prediction

accuracy. As shown in Figure 5A, three of the top four cell lines were from head and neck (including thyroid)

cancer. Interestingly, three out of the top four drugs target the PI3K/mTOR signaling pathway, and the remaining

one targets the related ERK/MAPK signaling pathway .

Figure 5. Prediction performance: (A) The top four cell lines with the best prediction performance. Cell-line names

along with their cancer types are shown. Three out of the top four cell lines belong to head and neck (including

thyroid) cancer; (B) The top four drugs with the best prediction performance. Drug names along with their targeted

pathways are shown. Three out of the top four drugs target the PI3K/mTOR signaling pathway.

4. Biological Analysis
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To identify significant genes, researchers employed a two-step approach: (1) the importance score for each gene

was derived based on its contribution to the random forest accuracy  and (2) using a t-test, differentially

expressed genes were further identified. For example, researchers investigated a paired cluster: cell-line cluster 4

and drug cluster 1, which is one of the highest performing cluster pairs. Initially, the top 200 genes were selected

based on the importance score in random forest modeling, and 70 out of the 200 genes met a Bonferroni corrected

p-value < 0.05. For these 70 genes, gene ontology enrichment analysis was performed using MetaCore software to

discover significant biological correlates. Table 2 shows the top five biological processes, yielding the related

processes of apoptosis and programmed cell death as the top two biological processes, with extremely low false

discovery rate (FDR) values of 2.55 × 10 . The hypergeometric distribution was used to compute unadjusted p-

values. For further insight, a protein–protein interaction (PPI) network with direct connections among the set of 70

gene products was constructed as shown in Figure 6.

Figure 6. A protein–protein interaction network using a set of key gene products in a paired cluster of cell lines and

drugs. Bcl-6 is a hub in the network with the highest node degree.

Table 2. The top five biological processes obtained from gene ontology enrichment analysis using 70 significant

genes.

Ranking Biological Processes FDR Number of Input
Genes

1 Regulation of apoptotic process
2.55 ×
10

40

2 Regulation of programmed cell death
2.55 ×
10

40

3 Regulation of cell death
4.94 ×
10

41
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Ranking Biological Processes FDR Number of Input
Genes

4 System development
1.93 ×
10 56

5
Positive regulation of nitrogen compound metabolic

process
5.35 ×
10 48
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