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Caseins and casein micelles are the most prevalent amphiphilic proteins that are widely used to make stabilised

emulsions. Caseins can adsorb at the oil–water interface, thus having a high surface activity during

homogenisation, processing and storage by preventing coalescence in emulsions under different conditions, such

as pH, temperature, structure elasticity and aggregation. Because of these properties, casein is now used to

deliver different hydrophobic bioactive in emulsion-based drug delivery systems.

casein micelles  encapsulation  bioactives  microencapsulation  nano emulsion

hydrogels

1. Introduction

Bioactive food components have received remarkable attention in developing functional foods and nutraceuticals

due to their countless physiological health benefits. However, these bioactive components are rapid to inactivation

and degradation by light, pH and temperature . This rapid degradation can be dodged or slowed down by the

encapsulation process till the absorption of these components at the targeted sites. Various encapsulation

procedures have been projected to make bioactive components fully functional by preventing their chemical

degradation during preparation, storage and transport . There are four delivery systems (lipid-based,

carbohydrate-based, hybrid system, protein-based) proposed based on processing conditions, physicochemical

stability, sensory and nutritional properties of bioactive components .

Moreover, the choice of a reasonable protein for a specific transporter relies on the properties of the particle (e.g.,

size, charge, surface qualities and biodegradability), properties of the bioactive compound to be encapsulated

(e.g., polarity, solubility and stability), and environmental conditions (e.g., pH, ionic quality, solvent properties and

temperature) . Though various proteins have been widely used as delivery vehicles, milk proteins (caseins and

whey) are exotic encapsulation particles due to their elastic structural and functional properties. They have efficient

bioactive binding abilities, better encapsulation efficiencies and controlled and target release of bioactive

components . As compared to whey proteins, casein micelles are recognised as a natural vehicle for bioactive

components since casein proteins have a porous structure with cavities and are recognised as GRAS (Generally

Recognized as Safe) . Casein micelles have unique structural and physicochemical properties, such as binding

with ions and small molecules to form macromolecules, exceptional stabilising characteristics, self-assembling,

emulsifying and water-binding abilities. The porous structure and unique functional properties make them
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appropriate for the transport of bioactive components; therefore, they have been used in traditional and new drug

delivery systems .

Furthermore, casein micelles are amphiphilic, which then can act as a nano-vehicle for both hydrophobic bioactive

components such as vitamin (D 2, D 3, E, K) and/or hydrophilic macromolecules such as whey protein and

polysaccharides. The vulnerability of caseins to proteolysis  guarantees the high discharge of bioactives by a

proteolytic enzyme in the gastric tract. The cellular uptake investigation of casein micelles revealed that casein

spheres could enter the plasma layer in an independent energy fashion due to the proline-rich peptide sequence in

casein . Moreover, caseins have various preservation capabilities essential for the safety of sensitive

encapsulated bioactive components, thereby controlling these bioactive agents’ biosafety and bioavailability. The

casein spheres could significantly advance as one of the best nutraceuticals and drug delivery systems due to its

protein matrix rich in surface reactive groups, hollow structure and innovative cell-penetrating properties .

Although much work has been done regarding caseins as a delivery system for pharmaceuticals, functional foods

and nutraceuticals , still some areas such as induced structural modification of casein micelles, by

altering secondary processing parameters, need to be explored. A recent review by Nascimento and colleagues 

presented an overview of casein-based hydrogels. Ranadheera  examined casein and casein micelles’ unique

properties as capsules, emulsions, hydrogels and film coatings and observed that different processing parameters

can alter casein micelles’ techno-functionalities, consequently facilitating the encapsulation of food bioactive

components inside casein micelles by binding at its hydrophobic and hydrophilic domains. Thus, this review

provides updated and most recent studies about casein micelle as a delivery vehicle with particular attention to

deliver bioactives in functional foods and nutraceuticals, along with detailed facts on how pH and temperature

affect the incorporated food bioactive component’s binding and release properties.

2. Casein Micelles and Its Structure

Another characteristic of caseins is the proline residues, specifically in β caseins, which disrupt the casein micelle

structure and give a non-globular nature to caseins with an open structure. These proline-rich caseins carry

numerous properties like resistance to heat denaturation, favouring the elastic conformations in solution, great

structural flexibility against environmental stresses, specific proteolytic cleavage and targeted drug delivery .

Numerous studies have been undertaken on how caseins interact with each other in the past. In 1920, it was

considered that caseins undergo self-association as well as with other caseins. The association of caseins within a

micelle depends on pH, ionic strength and temperature . Von and Waugh  were the first to perform a thorough

study about caseins interactions and the complexes they may form when calcium concentrations, temperature and

pH are varied . However, there have been several divergent opinions and debates about the critical forms of

relationships that dictate casein structure .

Hydrophobic interactions occur when two opposing surfaces come close together by the exclusion of water. Only

the interactions of β caseins with other caseins are typically hydrophobic, which results in β casein dissociation
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from casein micelles when hydrophobic interactions are minimised in milk upon cooling . Typically, when β

casein is cooled, up to 30% of it dissociates from the casein micelles, while the remainder remains attached to the

micelles. However, when milk is heated at 30 °C, all dissociated β caseins reassociate with the micelles. This

happens to β caseins associated with other caseins rather than attaching to calcium phosphate nanoclusters .

Although certain β caseins will dissociate from the casein micelle, this does not seem to disrupt the casein micelles

structure. As other caseins do not form hydrophobic interaction, so there is no dissociation upon cooling. According

to amino acid concentrations, 28% of κ casein, 30% of α s2 casein, 32% of α s1 casein and 34% of β casein

residues are hydrophobic, or about 1 in 3 . Hydrophobic Clustering Analysis (HCA) was carried out by Horne,

2017 to explore the hydrophobic residues along the caseins sequence. The sole purpose of 2D-HCA was to show

that all caseins contain segments that might interact hydrophobically with other caseins .

Several models of casein micelles have been reported based on the characteristics and interactions of caseins.

The oldest model was the core coat model proposed by Waugh, 1958 as in Figure 1 a. According to this model,

casein micelles composed of variable-sized cores of insoluble slats of α or β casein covered by a coat of κ caseins

. Later, a submicelle model was projected by Schmidt, 1982 shown in Figure 1 b, which suggested that casein

micelles were distinct subunits composed of colloidal calcium phosphate crosslinkages . Walstra in 1984

proposed a submicelle model according to which casein micelles are the assembly of roughly spherical subunits or

submicelles held together by hydrophobic interactions and calcium phosphate bridges .
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Figure 1. Casein micelles model by Waugh 1958 (a), models by Schmidt in 1982 (b), model proposed by Walstra

in 1990 (c1) & 1999 (c2), (differs in calcium phosphate location), Dual binding model by Horne (2003) (d1) and

interpretation of Schmidt’s model in 2005 (d2).

3. Factors Affecting Techno-Functionalities of Casein
Micelles

After discussing the numerous mechanisms by which caseins interact during micelle formation, it is important to

explore how such interactions can be engineered to change the functional properties of casein micelles. The

structures and techno-functionalities of casein micelles could be modified by various intrinsic and extrinsic factors

as shown in Table 1 . However, this review will focus just on temperature and pH effects.

Table 1. Intrinsic and Extrinsic Factors to Modify Casein Micelles Structure and Functionalities.
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The heating of proteins induces conformational changes, exposing the hydrophobic sites. Owing to the absence of

a tertiary structure, casein micelles are heat stable. However, distinct changes have been noted concerning the

frequency of the heat. Several biochemical modifications are identified, including deamidation of asparagine and

glutamine residues, proteolysis , and reticulation between amino acids, which results in protein polymerisation,

disulphide bridge breakdown and exchange of free thiols on cysteine residues. During heat treatment, the mineral

fraction, especially calcium phosphate, becomes less soluble in the aqueous phase, which may interact with casein

micelles . When the temperature is less than 95 °C for a few minutes, the changes in salt equilibria are

reversible. In comparison, prolonged exposure to high temperatures (for example, 120 °C for 20 min) results in

irreversible alterations to the casein micelles and salt distribution. Casein phosphoseryl residues may be partly

hydrolysed at temperatures greater than 110 °C . There are limited and old dated reports describing the

physicochemical changes in casein micelles induced by cooling.

Koutina and colleagues  reported that calcium and phosphorus concentrations in the soluble phase were more

significant at 4 °C than at 40 °C due to the increased solubility of calcium phosphate at lower temperatures.

Simultaneously, reduced hydration of casein micelles and release of β casein from the micellar structure has been

observed . Indeed, temperature reduction alters protein interactions, which allows the transfer of β casein into

the aqueous system. These modifications are reversible, and the prior clustering may be restored after heating;

however, the native framework is not fully restored because β casein would not revert to its original location . Liu

and colleagues  confirmed that the volume of soluble casein, hydration and apparent voluminosity of casein

micelles reduced as the temperature increased demonstrating that casein micelles structure and mineral in milk
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were temperature-dependent between 10 °C and 40 °C. However, the mineral system reaction is prompt during

this heating, while casein micelle re-equilibration occurs gradually during cooling. This method could be opted to

obtain purified β casein and obtain remained novel casein micelles (less mineralised, depleted in β casein and

more hydrated) with innovative techno-functionalities .

At pH 5.6, casein micelles enlarge and dissociation of caseins approaches a plateau, with β casein dissociation

reaching a maximum . A new limited group of caseins similar to casein aggregates is found in this pH spectrum

of 5.6 to 6 . These smaller units range in diameter from about 20 to 35 nm and have a molecular weight of 106

and 107 g·mol −1 . As the pH value decreases (6.7, 6.4, 6.1, 5.8, 5.5), the proportion of these smaller particles

increases. The non-dissociated casein micelles seemed to be close to native casein micelles in size, hydration,

appearance and zeta potential . Demineralisation of casein micelles by reducing the pH from 6.7 to 5.2 resulted

in a reduction of micelles’ granularity as determined by cryo-transmission electron microscopy, atomic force

microscopy , and by the presence of a distinctive point of inflection in SAXS profiles . At pH 4.6, caseins have

no charge and therefore have negligible solubility and got precipitate. Acidification causes a similar degree of

micellar destruction regardless of the type of acid used (lactic, citric), as physicochemical modifications primarily

depend upon pH. However, the composition of the aqueous phase, especially its ionic state, varies according to the

acid form, which has an impact on the structure and functionality of acidified caseins .

4. Casein Micelles–Based Delivery Systems

The scientific community has spent many decades attempting to characterise and comprehend the complexity of

casein micelles in terms of composition, structure and functional properties. As discussed in the previous section,

casein micelles may be modified under various temperature and pH conditions to alter their techno functionalities.

However, other physical, chemical or enzymatic methods have also been used to alter the technological

functionalities of casein micelles and these innovative micellar functionalities have been utilised in various

functional foods and nutraceuticals as carriers for bioactive compounds. The bioactive’s low absorption and

efficacy are associated with deprived bioavailability upon taking through the oral route and their vulnerability to

degradation (chemical, physical and enzymatic) during different processing, storage and transportation. These

factors require the protection of these bioactive. In this context, casein micelles were exploited to form

microparticles, nanoparticles and hydrogels for targeted delivery of bioactive food compounds at the site of action,

as illustrated in Table 2 .

Table 2. Casein Micelles-Based Capsules and Hydrogels in Delivering Food Bioactives.
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Casein Type

The Technique Used
for Preparing Loaded
Reassembled Casein

Micelles

Bioactive Encapsulation
Mechanism References

Micellar casein •  Casein–emodin
complex formation by
vortex

Emodin Microencapsulation [80]
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Casein Type

The Technique Used
for Preparing Loaded
Reassembled Casein

Micelles

Bioactive Encapsulation
Mechanism References

•  Heat and
Ultrasound treatments
•  Spray-drying
microencapsulation
•  In Vitro digestion
evaluation

β casein micelle

•  Drug loaded β
caseins dispersion
•  Freeze drying
•  Making and
description of gastro-
resistant Nanoparticle
in Microparticle
Delivery Systems
•  pH 2 and 6.5
•  In Vitro drug
release

Antiretroviral (ARV)
combinations of

Darunavir,
efavirenz and

ritonavir
encapsulation in β
caseins and further

within Eudragit
L100

Co-encapsulation,
Nanoparticle-in-

microparticle
delivery system

(NiMDS)

Casein gels

•  Casein gel
production at pH 1 and
9
•  Spray-dried gel and
tablet
•  Oven-dried gel and
tablets
•  Controlled release
under various
compression methods

Caffeine Gels

β casein micelle
Sodium Caseinate

•  β casein
preparation in 7.4
phosphate buffer
•  Blending of protein
and resveratrol
•  Production of
polysaccharide
conjugates by Millard
reaction
Resveratrol loading at
pH 7.5

Resveratrol
Encapsulation

Emulsions

β casein depleted
Casein micelles

•  Centrifugation
•  Lyophilisation
•  Mixing by shaker
•  Ultracentrifugation
•  Enzymatic
crosslinking

Linoleic acid Nanoencapsulation
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Casein Type

The Technique Used
for Preparing Loaded
Reassembled Casein

Micelles

Bioactive Encapsulation
Mechanism References

Caseins

•  Acidification
•  Homogenisation at
high pressure
• 
Curcumin/casein/soy
polysaccharide
complex at pH 10.0
•  In Vitro digestion
evaluation
•  CUR
pharmacokinetics of
CUR/CN/SSPS in
mice

Curcumin Nanoencapsulation

Casein Micelle

•  Chemical
acidification
•  Crosslinking by
transglutaminase

Jaboticaba extract Hydrogels

Sodium
casienate/Carrageenan

•  Primary and
multilayered emulsion
preparations
•  Microbeads
preparation by gelation
in an atomiser

β carotene Emulsions/Gels

Casein micelles

•  Mineral
arrangement
restoration and spray-
drying
•  Homogenisation at
high pressure
•  pH and
temperature-induced
opening

β carotene Nanoencapsulation

Re-assembled casein
micelles (r-CM)

Sodium caseinate
(CNP)

•  Binding at pH 7.4
and temperature 74 °C
•  Centrifugation
•  EGGC binding r-
CM and CNP
•  Encapsulation
efficiency
determination

Epigallocatechin
gallate (EGGC),

folic acid
Nanoencapsulation

Casein micelles •  Preparation of
casein-PAAm

Polyacrylamide Hydrogels

[88]

[14]

[89]

[11][90][91]

[92]

[93]

[94]



Casein Micelles for Bioactives | Encyclopedia.pub

https://encyclopedia.pub/entry/14243 10/19

Casein Type

The Technique Used
for Preparing Loaded
Reassembled Casein

Micelles

Bioactive Encapsulation
Mechanism References

hydrogels by free
radical polymerisation

Casein micelles

•  Spray-drying pH-
shifting
•  High-pressure
treatment

curcumin Nanoencapsulation

Reassembled Casein
micelles

•  Restoration of
mineral composition
and ultrahigh-pressure
homogenisation

Vitamin D Nanoencapsulation

Micellar Casein
•  A shift in pH and
ultrasonication

Fish oil Emulsions

Micellar casei
Re-assembled casein
micelle from micellar

casein

•  A shift in pH and
ultrasonication

Vegetable oil
(Lactobacillus and

Bifidobacteria

Nanoencapsulation
Microencapsulation

Casein micelles

•  Mineral
composition
restoration
•  Homogenisation
with high pressure

Omega-3 Nanoencapsulation

β Casein micelles •  Lyophilization Celecoxib Nanoencapsulation

Casein micelles +
konjac glucomannan

(KGM)

•  Enzyme-induced
casein KGM hydrogels
preparation
•  Ageing in
refrigeration

Docetaxel Gel

Casein micelles

•  Skim milk natural
conditions
•  Thermally treated
commercial skim milk

Vitamin A Nanoencapsulation

Casein micelles

•  Mineral
composition
restoration and
homogenisation at
high pressure
•  Re-assembly of
casein micelles

Vitamin D Nanoencapsulation
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In the nutraceuticals industry, both the hydrophobic and hydrophilic properties of casein micelles have been

exploited . The hydrophobic molecules present several bonding options when binding to the caseins, for

example, hydrogen bonding, van der Waals forces and hydrophobic interactions . A hydrophobic molecule of

vitamin D 2 has been encapsulated by Semo and colleagues , within casein micelle by using sodium caseinate.

However, the pH of the solution was changed to 6.7 according to natural milk pH. Caseins were able to

encapsulate vitamin D 2 efficiently due to hydrophobic domains and self-assembled micelle structure. Moreover,

vitamin D 2 was found 5.5 times more in casein micelles than in serum.

It has also been stated that casein interactions with polyphenols alter the conformation of caseins, resulting in a

decrease in the number of α helices and β sheets , so in a casein –polyphenol mixture, the antioxidant activity

decreased slightly, indicating a major influence of casein on polyphenol activity. This reduction was more evident in

casein that had been incubated with catechin or epicatechin. However, MALDI-TOF mass spectra of incubated

caseins did not reveal any stable adduct between the individual caseins, neither with catechin/epicatechin nor with

cocoa polyphenols derived from cocoa .

All these findings offered help for future utilisation of casein micelles to make complexes with other

polysaccharides/lutein/resveratrol to enhance their emulsifying and stabilising properties to acts as a carrier for

polyphenols.
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