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Hepatocellular carcinoma (HCC) still represents a human tumor entity with very limited therapeutic options,
especially for advanced stages. Here, immune checkpoint modulating drugs alone or in combination with local
ablative techniques could open a new and attractive therapeutic “door” to improve outcome and response rate for
patients with HCC.

hepatocellular carcinoma immunotherapy immune checkpoint inhibitors

locoregional treatment

| 1. Hepatocellular carcinoma (HCC)

Liver cancer represents a considerable health issue due to an increasing incidence in most regions worldwide. It
accounts for about 840,000 new cases and 780,000 estimated deaths—ranking 6th by incidence and 4th by cancer-
related mortality for both sexes 2Bl A clear male preponderance (2—-3 times higher, up to five times in some
countries B4 js reflected by the age-standardized worldwide incidence rate of 13.9 and 4.9 per 100,000 male and
female inhabitants, respectively [&. Both, incidence and mortality rates vary by region mapping to the geographical
distribution of viral hepatitis B/C (HBV/HCV) which are the most important causes of chronic liver disease and HCC
BI: while the highest numbers are found in eastern Asia with incidence/mortality rates of 17.7/16.0, respectively,
Europe records about 4.0-6.8 new cases and 3.8-5.3 deaths from liver cancer and North America has about 6.6
new cases and 4.8 deaths per 100,000 inhabitants, for example [&. These epidemiologic figures describe the
situation for primary liver cancer which mainly compromises cases with hepatocellular carcinoma (HCC, 75-85%),

besides 10-15% cases of intrahepatic cholangiocarcinoma as well as other rare tumors [,

Figure 1 summarizes the main risk factors for development of HCC which include HBV, HCV, excessive alcohol

consumption, metabolic syndrome, type-2 diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), aflatoxin
B, (AFB,), tobacco, dietary factors (coffee decreases while high iron intake increases the HCC risk), as well as
individual genetics (e.g., mutations in genes responsible for hemochromatosis, alpha-1-antitrypsin deficiency,
glycogen storage disease, porphyrias, tyrosinemia, and Wilson’s disease) B. Accordingly, programs for prevention
of HCC showed considerable efficiency, e.g., by a 80%/92% reduction of HCC incidence/mortality after neonatal
HBV vaccination in Taiwan [ and a 71% reduction of HCC risk by antiviral therapy achieving sustained virological
response (SVR, ).
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Figure 1. HCC-Etiology, risk factors, diagnosis and staging-dependent current treatment. Based on BEISIEIR]
Immunomodulatory treatments are highlighted bold and blue. Abbreviations: AFB4, aflatoxin B;; APHE, arterial
phase hyperenhancement; BCLC, Barcelona Clinic Liver Cancer; BT, brachytherapy; CT, computed tomography;
EtOH, ethanol; H(B/C)V, hepatitis B/C virus; H & E, hematoxylin & eosin; HCC, hepatocellular carcinoma; (ih)CC),
(intrahepatic) cholangiocarcinoma; IHC, immunohistochemistry; LTX, liver transplantation; MRI, magnetic
resonance imaging; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; SBRT,
stereotactic body radiotherapy; SIRT, selective internal radiotherapy; T2 diabetes, type 2 diabetes; TACE,

transarterial chemoembolisation.

| 2. Imnmunological Based Therapies in HCC
2.1. Established/Approved Immunotherapeutics in HCC

2.1.1. Established/Approved Immunotherapeutics in HCC
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Treatment options in advanced HCC (BCLC C) have evolved rapidly over the last 3 years. After the implementation
of the tyrosine kinase inhibitor (TKI) sorafenib in 2005 for advanced HCC 19 it took more than 10 years until
levantinib was able to show comparable efficacy and was approved for the treatment of HCC 1. The established
first-line treatment options opened the possibility for second-line studies. After having progressed during sorafenib,
treatment with regorafenib and cabozantinib showed efficacy in phase-Ill studies [12I13] gand extended the use of
TKI in HCC. Further treatment options in second-line consist of the use of ramucirumab (IgG1l targeting the
extracellular domain of VEGF receptor 2), the first monoclonal antibody that has been approved for the use in HCC
treatment [24]. The effect of ramucirumab was limited to those patients with elevated AFP levels. With an AFP level
of higher than 400 ng/mL, the first predictive biomarker was introduced to the treatment of HCC. All those treatment

options were in the pre-immune checkpoint era and consisted of TKIs or monoclonal antibodies.

Early phase Il studies investigating single agent use of immune-checkpoint inhibitors showed encouraging results
and let to the premature approval of pembrolizumab (target: PD-1). The results of the respective phase Ill studies
(KEYNOTE-240 and CheckMate 459) were disappointing. KEYNOTE-240 evaluated the efficacy of pembrolizumab
in second line compared to placebo. The primary endpoints, OS and PFS, were improved by the use of
pembrolizumab but did not meet their pre-specified statistical significance 22!, The use of nivolumab (target: PD-1)
compared to sorafenib in the first-line setting was investigated in the CheckMate-459 study. The primary endpoint
OS was not significantly improved 28 but both studies showed a favorable safety profile proofing the feasibility and

low toxicity of immune checkpoint inhibitors in advanced HCC (aHCC).

The combination of immunecheckpoint inhibitors with anti-angiogenic substances or TKI's revealed surprisingly
positive results. Within the ImBrave-150 study, atezolizumab (target: PD-L1) was combined with bevacizumab
(target: VEGF) and compared against sorafenib in first-line treatment of aHCC 2. With Hazard ratios of 0.59 and
0.58 respectively, both, PFS and OS were statistically and clinically significantly improved. The use of atezolizumab
and bevacizumab has set the new standard for first-line treatment of aHCC and recent data confirmed these
preliminary data with a mPFS of 6.8 months and and ORR of 27% vs. 4.3 months and 12%, respectively, for

sorafenib (18], Table 1 gives and overview of the approved treatment options in HCC.

Table 1. Approved substances in the treatment of aHCC.

Year of Comments
LS Approval Study and Primary Endpoint
First-Line Options
Sorafenib 2005 SHARP OS vs. placebo: 10.7 mo vs. 7.9 mo; (HR 0.69)
. Non inferiority to sorafenib
Levantinib 2018 REFLECT 0S: 13.6 mo vs. 12.3 mo (HR 0.92)
Atezolizumab + 2020 ImBrave- OS vs. sorafenib
Bevacizumab 150 OS: not reached vs. 13.2 mo (HR 0.58)
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Year of Comments

Substance Approval 27 and Primary Endpoint

Second-Line Options

After sorafenib first-line vs. BSC

Meeeluclle 2017 RESORCE 0S: 10.6 mo vs. 7.8 mo (HR 0.63)

After sorafenib first-line vs. BSC

Cabozantinib 2019 CELESTIAL 0S: 10.2 mo vs. 8.0 mo (HR 0.76)

After sorafenib first-line vs. BSC in patients with AFP
Ramucirumab 2019 REACH-2 >400 ng/mL
0S: 8.5 movs. 7.3 mo (HR 0.71)

AFP: alpha fetoprotein; aHCC: advanced hepatocellular carcinoma; BSC: best supportive care; HR: hazard ratio;

OS: overall survival; mo: months.

Ongoing studies evaluate the efficacy of double immunecheckpoint inhibition using PD-L1 inhibition and CTLA4
inhibition. The NCT02519348 study has shown efficacy and tolerability for the combination of tremelimumab
(target: CTLA-4) and durvalumab (target: PD-L1) (9]

2.1.2. Therapies with Immunologic Component

Locoregional therapy strategies (including transarterial embolization (TAE), transarterial chemoembolization
(TACE), transarterial radioembolization (TARE), and ablative therapies like radiofrequency or (RFA) and microwave
ablation (MWA)) are now routinely used in the adjuvant and neoadjuvant treatment of hepatocellular carcinoma (20]
Besides local therapeutic effects on tumor shrinkage, tumor necrosis and local reparative processes in the liver,
systemic effects are already recognized, although the clinical relevance of this inflammatory response is not fully
understood until now. Nevertheless, the increasing immunotherapy options for HCC raise the question, how
combination treatment strategies could improve local ablative techniques and, vice versa, how those invasive
procedures could impact on immunotherapy approaches. Therefore, the following chapter will summarize the

known findings in animal studies and in patients as already recently reviewed in detalil [21],

The first ablative experiments were performed with a locoregional VX-2 rabbit model, which served to establish the
ablative techniques for clinical beginners and to investigate experimentally the “therapeutic” effects 22 The
application of VX2 was criticized due to following reasons: (i) the used VX2 tumor, an anaplastic squamous cell
carcinoma induced by papilloma virus is not and does not reflect the typical HCC morphological and molecular
phenotype; (ii) genetically heterogeneity between VX2 tumor specimen and animal recipient raise the question of
being an allograft, rather than an autograft-model overall (21 Therefore, animal models with spontaneous HCC
development by treatment with the toxin diethylnitrosamine or by woodchuck hepatitis virus infection should reflect
more the real immunological in situ situation than the “classical” VX2 tumor model 23] A meta-analysis revealed

that carcinogen induced tumor models showed the best correlation with clinical responses [24]
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How does necrosis induce unspecific or even specific inflammatory response in these experimental in vitro and in
vivo settings? Interestingly, while apoptosis, but not necrosis, was linked to the inflammatory reaction in vitro 23,
the in vivo situation of the necrosis-inflammation-axis is quite complex, since immunogenic and non-immunogenic
cell death is involved in this process [28. Our own experiments with RFA in the VX2 model revealed that the local
tumor control was paralleled by a local and systemic inflammatory reaction of activated T-cells 24, The presented
tumor antigens, released by tumor ablative techniques, could induce a localized immune response and activate a
heterogeneous systematic immune response via antigen presenting cells like dendritic cells [281231 Additionally,
combination of tumor ablation with checkpoint inhibitors like anti-CTLA4 could enhance anti-tumor immunity in vivo,
too [BUE Consequently, the additional application of CpGs could improve this effect [22],

Effects on the immune response were clinically investigated in different patients’ cohorts with HCC treated with
different locoregional therapies like MWA, RFA, TACE or radioembolization with Y90 alone or in combination (as
summarized in Figure 2). One major concern is linked to the fact, that the immune response is mostly analyzed in
peripheral blood and not in the primary targeted liver tissue, limiting essentially the impact of such investigations.
Furthermore, the immune outcome parameters are not strictly the same ranging from immune cells and cytokines
to tumor-associated antigens. Lastly, transfer experiments of such “stimulated” immune cells and their cytokine and
tumor-associated antigen counterparts are missing as proof of principle. Nevertheless, major findings of immune

responses after locoregional treatment strategies of HCC are described in brief:

locoregional sample type immune-specific
therapies result/outcome

immune cells

MWA — | normal and/or l MBG] TTEES_
RFA Hce I tumor tissue cytokines :
il biood (neo-)antigens

Glypican-3

Figure 2. Overview of known immune effects of locoregional therapies for HCC. The arrows indicate the up- or
downregulation of the observed immune effects. Based on [33][341[351[36][37](38[391[40]141]  Appreviations: Y, XYZ:
HCC, hepatocellular carcinoma; IL, interleukin; MDSC, myeloid-derived suppressor cells; MWA, microwave
ablation; RFA, radiofrequency ablation; TACE, transarterial chemoembolisation; TNF, tumor necrosis factor; Treg,

regulatory T cell.
(1)MWA induces T-cell activation and IL-12 release [23134],

(2)The RFA associated T cell response is specific to thermally ablated HCC extracts 22 and is also specific for
tumor-associated antigens (8. Furthermore, patients receiving RFA showed reduced frequency of myeloid-

derived suppressor cells, which inversely correlates with tumor progression or relapse BZ. Treatment with RFA
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or TACE induces glypican-3 peptide specific cytotoxic T-lymphocytes compared to surgical resection which is a
very interesting target for typical Glypican-3 overexpressing HCCs (28],

(3) Treatment with TACE leads to a change in inflammatory cytokine towards a Th2 profile 2 and an enhancement
of CD4+CD25+ regulatory T cells 22,

(4)Radioembolization with Y90 leads to an increase in TNFA on CD4 and CD8 cells paralleled by an enhancement
of antigen-presenting cells 4],

Finally, ongoing clinical trials investigated the combination of immune checkpoint inhibitors and locoregional

ablative therapeutic strategies: Greten et al. initiated a clinical trial with 39 HCC patients who progressed after

sorafinib therapy with a locoregional therapy after tremelimumab treatment 21 and confirmed the median overall

survival of 10.9 months with a one complete and seven partial response as seen in an earlier study 42, The

additional molecular analysis of the peripheral blood of these treated patients revealed an increase of the PD1

expression on CD4+ and CD8+ T-cells.

Searching at the clinical trial registry (https://www.clinicaltrials.gov/ lastly accessed on 15 February 2021) with the

term “HCC” for the disease input box and “immunotherapy and locoregional therapy” for other terms input box (last

updated 3 February 2021) the database query indicates only six recruiting clinical trials (see Table 2).

Table 2. Ongoing studies investigating the combination of locoregional therapies and immunotherapy.

Start NCT Title Local Immuno-

Date Interventions Modulator Phase

Combined locoregional treatment
01/2020 NCT04220944 with immunotherapy for MWA/TACE Sintilimab 1

unresectable HCC.

IMMULAB-immunotherapy with

embrolizumab in combination RFA, MWA,
05/2019 NCT03753659 'p . Brachytherapy, Pembrolizumab 2
with local ablation in hepatocellular TACE

carcinoma (HCC)

PD-1 monoclonal antibody, PD-1 mAb and
11/2019 NCT04273100 lenvatinib and TACE in the TACE o 2
lenvatinib
treatment of HCC

TACE, Sorafenib and PD-1 sorafenib and
09/2020 NCT04518852 monoclonal antibody in the TACE 2
PD-1 mAb
treatment of HCC

05/2019 NCT03867084 dafety and efficacy of Local ablation Pembrolizumab 3
pembrolizumab (MK-3475) versus
placebo as adjuvant therapy in
participants with hepatocellular
carcinoma (HCC) and complete
radiological response after surgical
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Start . Local Immuno-
Date NCT Title Interventions Modulator
resection or local ablation (MK-
3475-937/KEYNOTE-937)

Phase

Nivolumab in combination with
05/2019 NCT04268888 TACE/TAE for patients with TACE/TAE Nivolumab 2/3
intermediate stage HCC

HCC: hepatocellular carcinoma; MWA: microwave ablation; RFA: radiofrequency ablation; TACE: trans-arterial

chemo-embolization; TAE: trans-arterial embolization.

Due to the low number of studies and the heterogeneous study designs (different locoregional interventions,

different combination partners), a more structured analysis of these strategies is needed in the future.

Taken together, there is evidence that tumor destruction via apoptosis and necrosis could induce a local immune
response via activation of T cells and dendritic cells and via suppression of regulatory T cells and of myeloid-
derived suppressor cells. This is associated with a change of inflammatory cytokines, whereby specific agonist like

CpGs or antagonists like anti-CTL4 could enhance the anti-tumor immunity.

Under these circumstances, the clinical efficacy of immune modulation via checkpoint inhibitors is essentially
influenced by the baseline immune response and by triggering pre-existing immunity, leading to the concept of
“hot” and “cold” tumors on the basis of level and spatial distribution of CD3+ and CD8+ T cell infiltration into the
tumor [43l44] The already mentioned response rate of e.g., atezolizumab and bevacizumab in HCC is mostly
comparable to a rate of “hot” HCC of about 20-30% [45][46] Although this is in line with results found in many other
cancers, it is surprising for HCC since the liver plays a central role in human immune regulation via the complex
interaction of sinusoidal endothelial cells and resident macrophages (Kupffer cells) with NK cells and different
CD4+/CD8+ T cell subsets and many HCCs develop on the basis of an underlying chronic inflammatory process
[47][48] A recently discussed elsewhere, the main issue to overcome the limitations of immunotherapy (alone or in
combination) is to include the specific immunogenicity of tumor cells in relation to immune escape mechanisms in
HCC 48 possible new treatment strategies for “cold” HCC could be based on intensive immune priming (e.g.,
vaccines, adoptive cell therapy or oncolytic approaches) and modulation (e.g., classical radiotherapy,
chemotherapy and targeted therapy) to essentially enhance response to checkpoint inhibitors 22 as also

addressed in the following sections.

2.2. Future Options of HCC Linked Immunmodulation

2.2.1. TIM-3

T cell immunoglobulin and mucin domain 3 (TIM-3), alias hepatitis A virus cellular receptor 2 (HAVCR2)) is an
immunosuppressive surface molecule that is expressed on T cells, dendritic cells, NK cells, macrophages and also
on HCC cells 2. It is commonly co-expressed with other immune checkpoint receptors like PD-1. Activation of

TIM3 leads to immune exhaustion of CD8" T cells and its expression on CD4" regulatory T cells (Treg) is
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associated with advanced tumor stage B%. On macrophages, TIM-3 can stimulate the M2 polarization and promote
tumor growth by increasing IL-6 secretion 21, Not surprisingly, TIM-3 expression has thus been correlated to poor
prognosis in various human cancers, including HCC B2BE3IB4, Four ligands binding to TIM-3 have so far been
identified: Galectin-9, phosphatidylserine, high-mobility group protein B1 (HGMB1) and carcinoembryonic antigen-
related cell adhesion molecule-1 (CEACAM-1) B2l Galectin-9 is produced by numerous cells types, including B
and T cells, macrophages, and dendritic cells but also by epithelial cells, cancer cells and fibroblasts. In HCC,
opposing effects of Galectin-9 have been described that are not well understood so far: while it is able to induce
apoptosis in in vitro and in in vivo HCC models 81, it contributes to the immune exhaustion in HBV-associated
HCC in patients and is a predictor for poor prognosis 24, Interestingly, high levels of Galectin-9 have also been
linked to advanced stages of liver fibrosis and cirrhosis in patients, underlining the connection between chronic

inflammatory liver damage, fibrosis and HCC &,

Several inhibitors for TIM-3 signaling have been developed (Table 3) BY53l While several compounds investigate
TIM-3 blockade in various solid tumors, only one investigator sponsored study is specifically looking into HCC.
Here, the anti-TIM-3 IgG4 antibody cobolimab is used in combination with the anti-PD1 antibody dostarlimab (both
manufactured by Tesaro/GSK) in adult patients with BCLC stage B or C HCC and no prior systemic therapy. The

study is ongoing and no interim data have been reported so far.
Table 3. TIM-3 inhibitors in clinical development.

Compound Company Status/Comment

BMS-986258 BMS Phase 1 in solid tumors in combination with nivolumab

Cobolimab (TSR-022, Various Phase 1 studies ongoing

Tesaro/GSK

GSK4069889) +PD-1 in HCC (NCT03680508)

INCAGNO02390 Incyte Phase 1 in solid tumors
LY3321367 Eli Lilly PD-1/TIM-3 bispecific
Development stopped
RG7769 (RO7121661) Roche Felisglel el
Phase 1 in solid tumors

Sabatolimab (MBG 453) Novartis Only in hematologic malignancies

Symo023 Symphogen Phase 1 in combination with PD-1 and/or LAG-3

antibodies

2.2.2. LAG-3

The lymphocyte activation gene 3 protein (LAG-3; CD223) is another strong suppressor of T cell function. It is
expressed on tumor infiltrating lymphocytes (CD4" and CD8" T cells), Tregy NKT cells. B cells, NK cells,

plasmacytoid dendritic cells (pDCs) and on tumor associated macrophages (TAMs) B8l |t regulates the immune
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response by inhibiting the proliferation and activation of T cells, by inducing T,.q and by blocking T cell activation
from antigen presenting cells (APCs) B2, LAG-3 is commonly co-expressed with PD-1 in T cell exhausted cancers
and contributes to resistance to immune checkpoint inhibitor therapy B61l62] For LAG-3, too, four ligands have
been identified today: major histocompatibility complex class Il proteins (MHC-II) 83 Jiver sinusoidal endothelial
cell lectin (LSECtin) 84, Galectin-3 62! and fibrinogen-like protein 1 (FGL-1) €. All ligands are of relevance for
HCC formation: while MHC-II is expressed on activated APCs (Kupffer cells), the other ligands can be expressed
by hepatocytes or sinusoidal endothelial cells which also play a role in chronic liver damage, fibrotic remodeling,
angiogenesis and tumor formation [EZI68IEAI0I7L] | AG-3 expression has therefore also been associated to poor

prognosis in various human cancers including HCC [Z2[Z3],

Preclinical data indicated a strong anti-tumor efficacy of LAG-3 antagonists, esp. when combined with anti-PD-1
agents AT Thys, about 15 large-molecule antagonists against LAG-3 (either mono- or bispecific against
PD-1) are currently investigated preclinically or in early clinical studies (recently reviewed by Lecocq et al. 28]). Yet,
single agent activity if those compounds was only limited and most trials now combine anti-LAG-3 with anti-PD-1
approaches. Currently, five studies investigating such approaches in HCC are listed at clinicaltrials.gov (Table 4).
So far, only the Phase 1 study for INCAGN02385 (NCT03538028) is completed and enrolled a total of 22 patients

across multiple solid tumor indications, including HCC, but no data was reported so far. Specific studies for HCC

are only conducted with the 1gG4 anti-LAG3 antibody relatlimab (BMS-986016) in combination with nivolumab in
either resectable (NCT04658147) or in immunotherapy naive patients after failure of tyrosine kinase inhibitors
(NCT04567615).

Table 4. LAG-3 inhibitors investigated in HCC.

Compound Company Combination N Phase NCT

INCAGNO02385 Incyte 22 (advanced solid tumors) 1 NCT03538028
Relatlimab BMS Nivolumab 20 1 NCT04658147
Relatlimab BMS Nivolumab 250 2 NCT04567615

122 (advanced solid tumors,
Surface

SRF388 with n = 40 HCC expansion 1 NCTO04374877
Oncology
arm)
XmAb®22841 Xencor Pembrolizumab 242 (advanced solid tumors) 1 NCT03849469

2.2.3. TIGIT

The T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) is expressed on activated NK and T
cells, including CD4+ and CD8+ T cells, as well as T,y and T helper cell populations under resting conditions to
exert an immunosuppressive condition 28, CD155 was identified as the main ligand, mainly expressed on DCs,
macrophages, B and T cells. CD112 (Nectin-2) and CD113 (Nectin-3) bind to TIGIT with lower affinity and all three

ligands can also be detected in the liver. TIGIT was found to be upregulated in patients with advanced fibrosis 2
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and in chronic viral hepatitis leading to HCC [B |n preclinical HCC models, TIGIT contributed to
immunosuppressive effects and potentially resistance to PD-1 treatment B2 |n clinical samples, TIGIT

expression increased with tumor dedifferentiation and with higher AFP expression [83].

Several monoclonal anti-TIGIT antibodies, usually IgG1 subtypes, are currently undergoing early clinical testing
(recently reviewed by Harjunpaa and Guillerey [8l). Most compounds are tested in combination with anti-PD-1 or
anti-PD-L1 antibodies but no study is specifically investigating HCC yet. Recently, tiragolumab in combination with
atezolizumab received FDA breakthrough therapy designation for the first-line treatment of metastatic non-small
cell lung cancer with high PD-L1 expression and no mutations in EGFR or ALK [84. Further studies that also
investigate HCC are expected. For other compounds, e.g., vibostolimab (MK-7684), etigilimab (OMP-313M32),
domvanalimab (AB-154), BMS-986207, ASP8374 or BGB-A1217 are currently in Phase 1 studies in various solid
tumors with a focus on NSCLC.

2.2.4. B7-H6

The B7 receptor family (alias natural cytotoxicity triggering receptor 3 or NCR3, Ligand 1) represents co-receptors
to e.g., CTLA-4 or PD-1 83, B7-H6 is a ligand to the activating receptor NKp30 on NK cells and thus contributes to
their activation 88, B7-H6 mediated activation of NK cells leads to cytokine release (IFN-g) and enhanced
cytotoxicity. Besides immunological effects, B7-H6 does also regulate intracellular signaling pathways, esp. STAT3
signaling, which are associated with apoptosis inhibition and induction of cell proliferation and therefore has a dual
role in cancer cell growth [BZI[88],

While B7-H6 is usually not expressed in normal tissues, it is commonly found in different human cancers like small
cell lung cancer 82 esophageal squamous cell carcinoma 29, gliomas 21, ovarian cancer 22 or HCC [88]193]
where it is associated with poorer outcome. Unfortunately, no agents modulating B7-H6 signaling on tumor or NK

cells are currently available (241,

2.2.5. CD47-SIRPa

CDA47 is broadly expressed on normal cells, including erythrocytes. It belongs to the immunoglobulin superfamily
and displays a “don’t eat me”-signal to macrophages and other phagocytes. Binding of CD47 to its receptor signal
regulatory protein a (SIRPa) on macrophages inhibits phagocytosis activation and can contribute to tumor
formation (22881, CD47 is therefore overexpressed on various hematologic and solid tumors to evade the cellular
immune response, including HCC where it is also associated to poorer outcome 24, Consequently, blocking CD47-

signaling inhibited growth of HCC models and restored sensitivity to chemotherapy 28!,

Activation of CD47 on tumor cells can also lead to caspase-independent cell death induction, although the exact
molecular mechanisms are still not completely understood 22, Therapeutic approaches currently focus on inhibiting
the CD47-SIRPa binding to activate phagocytosis of cancer cells and several small and large molecule inhibitors

are undergoing clinical investigations. Small molecule inhibitors are currently in preclinical stage only and have
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been recently reviewed elsewhere [120, Table 5 gives an overview of large molecule CD47 inhibitors in early clinical

trials. None of these agents is specifically investigated in HCC.

Table 5. Anti-CD47 antibodies in early clinical development.

Compound Company Status/Comment
AK117 Akeso Phase 1
ALX148 ALX Oncology Phase 2 combinations
AO-176 Arch Oncology Phase 1, combination with paclitaxel
CC-90002
(INBRX103) Celgene Phase 1
HX009 Hanxbio Phase 1
IBI188 Innovent Biologics Phase 1
IBI322 Innovent Biologics Phase 1
ImmuneOncia
IMC-002 . Phase 1
Therapeutics
Magrolimab Gilead Phase 3, received breakthrough therapy designation for MDS, Phase
(HU5F9-G4) 1b combination studies in solid tumors
SGN- . .
CDATM Seattle Genetics Terminated
SRF231 Surface Oncology Phase 1 completed
ZL-1201 ZailLab Phase 1

Recently, a Phase 1 study with the bi-functional SIRPa-Fc-CD40L antibody SL-172154 was initiated
(NCT04406623). This agent targets CD47 on tumors and CD40 on antigen presenting cells to
enhance antigen presentation to T cells and to induce tumor cell killing.

2.2.6. Additional in-Silico-Analysis of HCC Linked Immunmodulation via TUMOR Immune
Estimation Resource (TIMER)

We performed an additional in silico analysis of TIM3, LAG3, TIGIT, B7-H6 and CD47-SIRPa to explore the
correlation of these markers of immunomodulation in situ by using the online platform TIMER, which is based on
10,897 samples across 32 cancer types from The Cancer Genome Atlas (TCGA) 294, This included 363 primary
HCC samples with mainly male patient population (66%) of caucasian ethnicity (60%) showing mostly a moderate
differentiation (50%) and a relative homogenous UICC-stage distribution (Stage | 39%, Il, 22%, 11l 31% and IV 3%.
missing 6%) as already published 18,

https://encyclopedia.pub/entry/9269 11/21



Immunmodulatory Treatment Strategies of HCC | Encyclopedia.pub

We focused on the gene module of TIMER to investigate the correlation with the tumor purity and the six tumor
infiltration subsets of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in HCC as

presented in Figure 3.
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Figure 3. In silico analysis using TIMER with the gene module for markers of immune modulation TIM3, LAG3,
TIGIT, B7-H6 and CD47-SIRPa in HCC.

Overall, all markers of immunomodulation showed a negative correlation with the tumor purity indicating that all
markers are more found at the tumor border than in the tumor center. Furthermore, all markers of
immunomodulation were positively associated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils
and dendritic cells in HCC, with a partial correlation factor reaching up to 0.725/0.764 for TIM3 and
macrophages/dendritic cell. This indicates a very strong association with tumor infiltrating immune subsets in HCC,
especially with antigen presenting cells.

This in silico analysis revealed two major patterns of correlation in dependency of infiltration density of tumor
infiltrating immune cells: immunomodulators like TIM3 and TIGIT showed parallel increasing expression, while the
immunomodulators LAG3, B7-H6 and CD47 displayed a heterogeneous expression pattern compared to the
density of tumor cells. Taken together, the in silico analysis indicates that the density of tumor infiltrating immune
cells like B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells is mostly paralled by the
expression of selective markers of immunmodulation. Therefore, the tumor compartments as well as the specific
subsets of immune cells, too, must be integrated in the evaluation as biomarkers for consecutive immune
checkpoint therapy in HCC.
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