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The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads

to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is

mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known

phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the

subsequent development of various disease processes. 

mitochondrial diseases  oxidative stress

1. Neurological Diseases

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral

sclerosis (ALS) are age-related conditions characterized by significant changes in mitochondrial structure and

function associated with free radicals generation .

Increased levels of free radicals and higher oxidation of macromolecules including mtDNA have been observed in

Alzheimer’s disease (AD) human brains and in various animal models . What is more, free radicals have been

shown to increase the activity of β- and γ-secretases, enzymes responsible for amyloid β generation from amyloid

precursor protein . Further, Nonomura et al.  demonstrated that oxidative damage is quantitatively greatest

early in the AD and decreases with dementia progression and amyloid β plaque deposition. It has been proposed

that mitochondrial oxidative stress damages mtDNA encoding electron transfer chain subunits, which negatively

affects ATP production and calcium homeostasis, and exacerbates oxidative stress. The latter, in turn, increases

amyloid β deposition and leads to further consequences of neuronal dysfunction, neurodegeneration, and cognitive

impairment in AD .

It is still not clear whether mitochondrial dysfunction plays a direct role in the initiation of AD according to the

“mitochondrial cascade hypothesis” or is, rather, a consequence of amyloid β accumulation. Indeed, Reddy 

suggested that progressive mitochondrial damage leading to disease progression is caused by β-amyloid entry into

mitochondria, triggering the production of free radicals. Oxidative damage and neuroinflammation have been

shown to correlate with Alzheimer’s disease progression . A synergistic role of both pathways is also possible 

. It is certain, however, that many of the therapies targeting mitochondrial dysfunction in neurodegeneration and

cognitive dysfunction in AD rely on the application of antioxidants and a reduction in free radical levels .
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Mitochondrial damage closely related to oxidative stress seems to play an important role in the pathogenesis of

Parkinson’s disease (PD) . At the cellular level, PD is caused by both the overproduction of reactive oxygen

species and changes in dopamine metabolism, as well as alteration in the mitochondrial electron transporter chain

function in the neurons of substantia nigra . The involvement of oxidative stress in dopaminergic cell

degeneration was indicated further by the increased oxidative damage to mtDNA noted in PD neurons of

substantia nigra . Even mutations in genes coding proteins linked to PD such as DJ-1, parkin, PINK1,

alpha-synuclein, and LRRK2 affect mitochondrial function and integrity, causing enhanced ROS generation and

vulnerability to oxidative stress . Currently, the role of antioxidant neurotrophic strategies in PD treatment is

emphasized. One of them is the proposal to combine antioxidant therapy with stem cell therapy to reduce damage

and induce repair of dopaminergic neurons for the treatment of Parkinson’s disease .

Oxidative stress exacerbating damage to mitochondria has been also identified as one of the factors involved in

demyelination, axonal and neuronal death in multiply sclerosis (MS), and motoneuron death in amyotrophic lateral

sclerosis (ALS) . Undoubtedly, an inflammatory process engaged in oligodendrocyte pathology that

activates and recruits lymphocytes, macrophages, and microglia is able to generate vast quantities of oxidizing

radicals contributing to MS tissue injury . In the case of ALS pathology, the involvement of ROS is supported by

the elevated free radical levels in the cerebrospinal fluid, serum, and urine of patients with sporadic and familial

forms of ALS . In addition, in familial ALS, altered reactivity of superoxide dismutase, responsible for the

clearance of reactive oxygen species, is reported . As shown by Petrozziello et al. , oxidative stress in ALS

causes mitochondrial fragmentation and dysfunction. Unfortunately, clinical trials of antioxidant therapy appear to

be unsuccessful despite beneficial effects in animal models . Recently, the reduction of oxidative stress damage

has been shown to effectively prolong animal survival time and reduce brain pathological symptoms in a mouse

model of ALS .

The causes of schizophrenia are as yet undetermined. One hypothesis points to oxidative stress as the

contributing factor to the pathophysiology of the disease . This is supported by decreased levels of

antioxidants and augmented oxidative stress markers in schizophrenic patients . Significantly reduced

glutathione (antioxidant) levels have been reported in magnetic resonance spectroscopy in the cerebral cortexes of

living patients , but also in post-mortem examination . Computer tomography scans showing brain atrophy in

chronic schizophrenic patients revealed strong correlation between brain pathology and low glutathione peroxidase

activity in platelets . In addition, the oxidative imbalance in schizophrenia was paralleled by increased severity

of negative symptoms of the disease . Cuenod and colleagues  emphasize the role of complex mechanisms

of oxidative stress and its modulation in the pathophysiology of schizophrenia, and attribute a major role to

dysregulation of redox mechanisms, disruption of mitochondrial bioenergetics, and neuroinflammation in the

development of oxidative stress during neurodevelopment. The role of one of the forms of oxidative stress, the so-

called carbonyl stress, is currently being studied in the pathophysiology of schizophrenia. Hara et al.  indicate

that this stress causes mitochondrial damage, lowers mitochondrial membrane potential, and hinders aerobic

respiration processes. Even genetic predisposition linked to mitochondrial function and subsequent oxidative stress

has been found; gene cacna1c is considered as a strong genetic risk factor for the development of affective

disorders . Although the evidence is inconsistent, there are studies demonstrating the efficacy of antioxidant
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therapies in the treatment of schizophrenia that support the hypothesis that oxidative stress plays an important role

in its development .

2. Neurodevelopmental Disorders

Oxidative stress induced by prenatal exposure to toxic chemicals is regarded as a key factor in the occurrence of

neurodevelopmental disorders . In the case of autism mitochondrial abnormality, augmented oxidative stress

and decreased antioxidant capacity have been reported in autistic persons, all of which may be responsible for

neuroinflammation and autism pathology . Recent analysis of blood samples from children with autism

spectrum disorders revealed reduced total plasma peroxidase and total antioxidant capacity, resulting in an

imbalance in the oxidant/antioxidant ratio and abnormalities in neuronal transduction . Zawadzka et al. 

showed that impaired brain development is a consequence of inflammatory processes inducing oxidative stress

and mitochondrial damage, which in turn exacerbate oxidative stress, triggering further cellular damage. In support

of the role of oxidative stress in autism pathology, studies using n-acetylcysteine or other antioxidants have

reported a reduction in some autistic behaviors in children, such as irritability and hyperactivity .

3. Autoimmune Diseases

Another group of diseases whose pathomechanism may involve mitochondrial dysfunction causing oxidative stress

are T cell-mediated autoimmune diseases such as type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid

arthritis (RA), and systemic lupus erythematosus (SLE) . The autoreactive T cells that recognize systemic or

organ-specific self-antigens, responsible for autoimmunity, are susceptible to ROS that are engaged in their

differentiation, effector responses, and inducing proinflammatory cytokine release . The latter triggers

inflammation involved in the pathomechanism of autoimmune disorders, resulting in oxidative stress and damage

to cellular macromolecules. Oxidative stress and inflammation are closely related. Mitochondrial-derived ROS via

the oxidation of biomolecules or structural modification of proteins and genes may start signaling cascades, leading

to inflammatory processes. ROS-activated transcription factors and pro-inflammatory genes induce inflammation

and recruitment of immune and inflammatory cells to the site of oxidative stress. Activated immune cells generate

ROS at the site of inflammation, amplifying oxidative stress and tissue injury .

In SLE, patients show increased ROS in T cells as well as more oxidized lipoproteins, which can lead to vascular

inflammation and atherosclerosis . Another pathway of action of ROS on the development of an autoimmune

SLA is the damage of DNA, which becomes a major antigenic target for autoantibodies .

In T1D, profound metabolic changes occur during insulin deprivation including an increase in basal energy

expenditure and reduced mitochondrial function . Sustained hyperglycemia induces increased ROS

production, and systemic oxidative stress has been confirmed at early onset of T1D, as well as its increase in early

adulthood . Indeed, mitochondria-derived free radicals has been demonstrated to contribute to the process of

immune-mediated beta-cell destruction via the induction of cytokine toxicity in T1D . Another reason is that
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beta-cells exhibit insufficient antioxidant defense, which is associated with low expression of antioxidant enzymes

in islets .

The chronic oxidative stress in the RA is characterized by a significant increase in mitochondrial ROS production

. It contributes to joint damage, playing the role of messenger in inflammatory and immunological cellular

response including activation of the NLRP3 inflammasome, which produces cytokines linked to RA symptoms .

4. Kidney and Lung Diseases

Other diseases associated with mitochondrial oxidative stress and inflammation are chronic kidney disease (CKD)

and chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction, such as decreased mtDNA, and

ATP production, as well as the loss of mitochondrial membrane potential, related to increased mitochondrial ROS,

has been shown to precede kidney injury and further contribute to the development and progression of CKD,

characterized by a decrease in the number of active nephrons . Excess ROS present early during CKD

progression and contribute to inflammatory process in the renal parenchyma via inflammatory cell recruitment and

proinflammatory cytokine production, leading to endothelial impairment and atherosclerosis . Interestingly, the

mechanism of nephrotoxicity of some drugs (cyclosporine, gentamycin) has been demonstrated to involve

oxidative stress induction and lipid peroxidation .

A leading cause of COPD is cigarette smoking. Cigarette smoke, particulate matter, and noxious gases including

ozone are major exogenous sources of ROS that challenge respiratory epithelial cells and injure small airways and

lung parenchyma directly or indirectly by increasing inflammation . Nevertheless, inflammation and

oxidative stress are inextricably linked. Indeed, oxidative stress-induced tissue damage can trigger inflammation

and immune responses, which in turn can enhance ROS production .

Airway smooth muscle and bronchial biopsies from COPD patients showed increased mtROS production and

decreased antioxidant enzymes compared to healthy control subjects . Further, impaired redox regulation

associated with cellular ageing has been described to contribute to the development and acceleration of COPD

pathogenesis via enhanced inflammation, protease–anti-protease imbalance, and cellular apoptosis .

5. Cardiovascular Diseases (CVDs)

ROS are considered as one of the major causative factors leading to atherosclerosis development. Oxidative

stress contributes to atherosclerotic plaque formation via induction of endothelial dysfunction, vascular

inflammation, and accumulation of oxidized low-density lipoprotein . All these lead to lesion formation and

accumulation of macrophages, which, apart from producing ROS, phagocytize oxidized lipoproteins and transform

into foam cells, components of atherosclerotic plaque . Oxidative stress markers have been shown to be

elevated in patients suffering from cardiovascular diseases such as hypertension  and heart failure, whereas

its increase in cardiomyocytes is correlated with the development and the progression of maladaptive myocardial

remodeling . Cardiac dysfunction associated with metabolic syndrome comprising of diabetes, high blood
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pressure, and obesity is actually due to enhanced oxidative stress causing damage of mitochondria, the activation

of mitochondria apoptotic signaling pathways, and cardiomyocyte contractile dysfunction .

Interestingly, numerous studies indicate that the protective nature of estrogen against cardiovascular disease risk

in premenopausal women is due to its oxidative stress-inhibitory properties .

6. Cancer

Elevated ROS mutagenicity results from the induction of genetic instability evoked via increasing receptor and

oncogene activity, stimulation of oxidative enzymes or growth factor-signaling pathways involved in regulation of

DNA repair, cell proliferation, apoptosis, and tumorigenesis .

As mentioned earlier, excess ROS can also directly damage DNA by causing single- and double-strand nucleic

acid breaks and by forming an oxidized derivative of deoxyguanosine, 8-Oxo-2′-deoxyguanosine, which contribute

to carcinogenesis through promoting mutagenesis . Consequently, mutations in mtDNA, reduced mtDNA

content, and mutations in nuclear genes can irreversibly damage mitochondrial oxidative phosphorylation. The

latter leads to mitochondrial dysfunction and further genetic instability in the nuclear genome, and is one of the

proposed causes of cancer .

Not surprisingly, oxidative stress may be responsible for the onset and development of various types of cancer

from hepatocellular carcinoma, breast cancer, and lung cancer to brain tumors . ROS have been also

shown to induce DNA hypermethylation, which can affect the tumor phenotype .

Oxidative stress can act on cancer cells in two ways, which should be taken into account in the design of anti-

cancer drugs targeting ROS. In physiological amounts, ROS contribute to further cancer growth by transducing

signals for cell proliferation, migration, and angiogenesis, whereas severe oxidative stress may produce a

deleterious effect through the induction of cell-cycle arrest and apoptosis . However, cancer cells are able to

resist excessive intracellular ROS by activating the transcription factor and nuclear erythroid 2-related factor

(NRF2) responsible for antioxidant enzymes transcription, promoting cancer cell survival .

All disease entities induced by mitochondrial damage are presented in Figure 1.
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Figure 1. Increased reactive oxygen species, overwhelming antioxidant defenses, induce mtDNA damage, and

mitochondrial dysfunction lead to enhanced oxidative stress. This, in turn, can induce biomolecule and cell

damage, apoptosis, and inflammation, triggering various pathologies.
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