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Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor with dismal survival and poor response to

conventional therapies. Therefore, the development of immunotherapy for GBM treatment is necessary. 
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1. Introduction

Brain tumors are heterogeneous tumors that can be classified into two general categories based on their origin. The

primary brain tumors stem from the brain, while the origins of metastatic types are other organs that have metastasized to

the brain . Approximately 80% of brain malignancies originate from glial cells and are called gliomas . According to

the 2016 World Health Organization Classification of Tumors of the Central Nervous System, diffused gliomas are

categorized into different types, including Astrocytomas, Oligoastrocytomas, Oligodendrogliomas, and Glioblastoma . In

this updated classification, molecular parameters are combined with the histological patterns. For instance, the mutation

status of isocitrate dehydrogenase (IDH)-1/2 gene and 1p/19q codeletion status are two molecular parameters in

classifications of gliomas . The classification of brain tumors is thoroughly reviewed in . Glioblastoma

multiforme (GBM) is the most malignant and common type of brain tumor in adults. GBM can arise from astrocyte,

oligodendrocyte, and even neural stem cells, and therefore, is not classified in a specific category of gliomas . The word

multiforme indicates the heterogeneity of this tumor in terms of molecular markers, physiopathology, clinical

manifestations, and response to treatment .

The average survival in GBM without treatment is three months and with current treatments it is 12–19 months .

Standard treatment includes surgery, radiotherapy, and chemotherapy . Temozolomide (TMZ) is the gold-standard

chemotherapy used in GBM due to its high permeability to the blood–brain barrier (BBB). TMZ is usually given after

surgery for six weeks with radiotherapy . Despite these multiple treatments, the recurrence rate of GBM is very high,

with 2-year and 5-year survivals of 26.5% and 7%, respectively . Steroids are also used to reduce cervical edema .

Recently, two other treatments for GBM have been approved in the United States: (I) bevacizumab, a monoclonal

antibody (mAb) against vascular endothelial growth factor (VEGF) receptor , and (II) tumor-treating fields . However,

the effectiveness of both treatments remains controversial. Accelerated approval of bevacizumab in GBM by the FDA

indicates the urgent need for advanced and targeted treatment. Due to the ineffectiveness of current treatments on GBM,

various types of targeted therapies, such as immunotherapy, raised hopes in the treatment of GBM.

2. Glioblastoma Immunotherapy

It was initially believed that the central nervous system (CNS) was an immune-privileged organ. Studies on CNS

autoimmune diseases such as multiple sclerosis and encephalitis, the discovery of the CNS lymphatic system, and

successful treatment of brain metastases, have shown that the CNS has an immunological activity . However, some

unique features of the CNS, such as the presence of the BBB, the use of corticosteroids for cerebral edema, and the

immunosuppressive mechanisms of brain tumors, caused problems in immunotherapy . Regarding the heterogeneous

glioblastoma microenvironment (GME), severe immunosuppression, low mutational burden, and decreased antigen

presentation, GBM is very poorly responsive to immunotherapy so far   (Table 1). Immune checkpoint inhibitors (ICIs)

have become a promising immunotherapy approach in the treatment of many solid tumors (reviewed in ). In this

method, inhibitory ICs that cause immune exhaustion are blocked, thereby restoring the immune cells’ ability to induce

antitumor responses . The prerequisite of ICI treatment is the overexpression of ICs in the tumor microenvironment

(TME). Overexpression of ICs has been reported only in some subtypes of GBMs . Clinical trials on GBMs have

demonstrated that ICIs do not have a significant advantage over other therapies such as bevacizumab, radiotherapy, and
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chemotherapy. Hence, they proposed a combination of therapies or ICI applications as a neoadjuvant therapy before

surgery . The combined use of several ICIs, although improving the response to treatment, increases their toxicity

and the likelihood of CNS autoimmunity .

Table 1. Advantages and disadvantages of the current immunotherapies in GBM.

Immunotherapy Advantage Disadvantage Refs.

Immune checkpoint inhibitors (PD-1,

CTLA-4, LAG-3, TIM-3, IDO, CD27)

Tolerable

Reinvigorate antitumor T

cells

Promising results in

preclinical and first phases

of clinical studies

Proposed as a neoadjuvant

therapy

Grade I-II toxicity in

monotherapy

Grade III-IV in multi ICI

therapy

No significant advantage

(better OS and PFS) over

bevacizumab or TMZ

Various IC expression levels

in patients

Decreased effects in patients

receiving TMZ

Bevacizumab (anti-VEGF)

FDA-approved for GBM

Prevents angiogenesis

Has an anti-edema effect

Accelerated approval after

phase I/II

No outstanding results in

extending PFS and OS

Cetuximab (anti-EGFR)

Tolerable

Promising results in

preclinical studies

No significant survival benefit

in the phase II trial

Insufficient BBB penetration

due to the large size

Immunotoxins (mAbs conjugated

with bacterial toxin or anti-mitotic

agents) (Depatuxizumab

mafodotin, Losatuxizumab

vedotin, ABBV-221, ABBV-231)

Improved survival in

combination with TMZ in

the phase II trial

ABBV-231 is in the phase I

trial

No significant survival benefit

in the phase III trial

Safety concerns

Antigen-escape

(downregulation of mAb

target)

New generations are in the

evaluation process

Anti-CSF-1R mAb

Decreases the recruitment

of TAMs into the GME

Under investigation in the

phase I/II trial in

combination with ICIs

Might have insufficient BBB

penetration due to large size
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Immunotherapy Advantage Disadvantage Refs.

CAR T cell against IL13Rα2,

EGFRvIII, Her-2, EphA2

Appreciable safety profile

Considerable infiltration into

the GME

Significant clinical response

Relapse occurred 2–29

months after treatment

Immune-escape through

antigen loss

Heterogeneity of GME made it

difficult to use monoclonal

CAR T cell for GBM (only

one-third of GBM patients are

EGFRvIII+)

CAR T cells targeting multiple

antigens are needed

BiTE (against EGFR)

Appreciable safety profile

Recruits EGFR-specific T

cells in the GME

Can override antigen-

escape in combination with

CAR T cells

Heterogeneity of GME

challenges the targeting of a

specific antigen in all GBM

Tumor vaccines using specific

peptides (Rindopepimut, survivin) or

tumor lysate

Tolerable

Low off-target effects

Improve OS and PFS

(mOS:24 months)

Synergistic effect in

combination with

bevacizumab

Rindopepimut is effective only

in EGFRvIII+ patients (30% of

all GBM)

No survival benefits due to the

antigen-escape

DC Vaccines (ICT-107:pulsed with

six peptides)(DCVax: pulsed with

tumor lysate)

ICT-107: Promising results

in the phase II trial

DCVax: Improves OS to 24

months

Override antigen-escape

Personalized medicine

2% serious adverse events in

DC vaccines

Expensive process of

personalized medicine

Viral gene therapy: (Toca-511:

Metabolize prodrug (FC) to drug

(5-FU))

VB-111: delivers pro-apoptotic

proteins

Ad-RTS-hIL-12: Conditional

delivering of IL-12)

Appreciable safety profile

Promising results in early

trials with a 22% durable

response rate

Synergistic effects with ICIs

No survival benefit in the

phase III trials
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Immunotherapy Advantage Disadvantage Refs.

Oncolytic virotherapy

(Adenovirus, polio-rhinovirus

chimera, herpes simplex virus)

Safe intratumoral

administration, induces

innate and adaptive

immune responses

Turns immunosuppressive

to immune-active TME

Promising survival results in

early trials

Evaluation in phase II trials as

a monotherapy or with ICIs

Adenosinergic pathway (ARs, CD39,

CD73, ADA)

High expression in all types

of GME

No antigen escape

Turns immunosuppressive

GME into immune-active

GME

Reduces angiogenesis

Potentiates other

immunotherapies such as

ICIs, CAR T cell, and NK

cell therapy

Synergistic effects with

conventional therapies

Overrides chemoresistance

Not entered in clinical trials

yet

mAbs might have insufficient

BBB penetration

All pathway components

should be targeted to get

maximum results

Not effective as monotherapy

and should be used as

combination therapy

PD-1. Programmed cell-death protein-1; CTLA-4. cytotoxic T-lymphocyte-associated protein-4; LAG-3. Lymphocyte

activation gene-3; TIM-3. T-cell immunoglobulin and mucin domain-containing protein-3; IDO. Indoleamine-2,3-

dioxygenase; ICI. Immune checkpoint inhibitor; OS. Overall survival; TMZ. Temozolomide; VEGF. Vascular endothelial

growth factor; GBM. Glioblastoma multiforme; PFS. Progression-free survival; EGFR. Endothelial growth factor receptor;

BBB. Blood-brain barrier; mAb. Monoclonal antibody; CSF-1R. Colony stimulating factor-1 receptor; GME. GBM

microenvironment; CAR. Chimeric antigen receptor; IL13Rα2. Interleukin-13 receptor α2; Her-2. Human epidermal growth

factor receptor-2; BiTE. Bispecific T cell engager; mOS. Mean OS; DC. Dendritic cell; FC. Fluorocytosine; 5-FU.5-

Flurouracil; ARs. Adenosine receptors; ADA. Adenosine deaminase.

In addition to ICIs, the use of mAbs and their derivatives such as nanobodies, single-chain variable fragment (scFv),

bispecific T-cell engager (BiTE), and immunotoxins is also a routine method in immunotherapy . Bevacizumab was

the first mAb to be accelerated and approved in GBM . This anti-VEGF mAb prevents angiogenesis in the TME .

Application of mAbs against endothelial growth factor receptor (EGFR) also yielded promising results in initial studies but

was discontinued in clinical trials due to a lack of significant increase in patient survival and rising safety concerns 

. The EGFR variants, especially EGFR class III variant (EGFRvIII), are overexpressed in a considerable part of GBM

patients, making them an ideal target for immunotherapy . However, the association of EGFR overexpression and

mutations with the overall survival of patients is still controversial . Moreover, the results of trials showed EGFRvIII

downregulation following targeted therapy against EGFRvIII . This has raised the question of whether EGFRvIII

mutation represents a driver mutation, or maybe it is only a passenger mutation with no considerable impact on the

survival of glioma cells. Currently, other generations of conjugated mAb are being studied in trials. The greatest challenge

of mAb therapy in brain tumors is the large size of mAbs and the lack of proper penetration into the TME due to the BBB.

The smaller derivatives of mAb or making the BBB permeable to these factors could enhance the treatment responses

.
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The application of autologous T cells genetically engineered with a chimeric antigen receptor (CAR) demonstrates

remarkable efficiencies in many blood cancers and solid tumors . These cells are against a tumor-specific antigen

(TSA) and can sustain antitumor activity with the help of various costimulatory molecules . The CAR T cells used in

GBM were against EGFRvIII, interleukin 13 receptor-α2 (IL13Rα2), human epidermal growth factor receptor-2 (HER2),

and Eph receptor-A2 (EphA2) . The results of the trials indicate a relative response to this treatment. Given the

heterogeneity and high plasticity in the GME, the use of a specific CAR T cell reduces the expression of the target

antigen, and the tumor escapes the CAR T cell response . Therefore, studies on the application of bivalent and trivalent

CAR T cells are ongoing . Another way to overcome antigen escape is to use BiTEs along with CAR T cells. Choi et al.

developed an anti-EGFRvIII CAR T cell, which also expresses anti-EGFR BiTEs . It initially targets positive EGFRvIII

cells and then recruits T cells specific for wild-type EGFR to the TME. The initial results against heterogeneous GBMs

were promising .

Tumor vaccines containing TSAs are another cancer immunotherapy method aiming to stimulate the patient’s adaptive

immunity against TSAs . Peptide vaccines containing EGFRvIII and survivin peptides in patients who were positive for

these antigens raised proper responses, although the issue of antigen escape in this method is also challenging .

Ex vivo pulsing the patient’s autologous dendritic cells (DCs) with specific peptides (in ICT-107) or tumor lysate (in DCVax)

in DC vaccines stimulates a better immune response than peptide vaccines . This type of treatment is a

personalized treatment that can overcome the high heterogeneity of GBM in patients. However, immunosuppressive GME

causes pulsed DCs to become inefficient in antigen presentation. Initial clinical trials of tumor vaccines alone or in

combination with bevacizumab or chemotherapy and surgery have yielded encouraging results .

According to initial observations of tumor regression in viral infections, viral therapy is currently used in various cancers,

mostly solid tumors . Viruses can be used in gene therapy, delivering the desired genes to the TME. These genes

mainly produce pro-apoptotic proteins (in VB-111 vaccine), inflammatory cytokines (in Ad-RTS-hIL-12 vaccine that

encodes IL12 conditionally), or enzymes that convert prodrugs to anticancer drugs (in Toca-511) . Another type of

virus therapy involves oncolytic viruses that selectively infect and lyse cancer cells in which antiviral responses are

impaired . Adenovirus, herpes simplex virus, and poliovirus are being studied in GBM and have shown a relative

response in combination with other treatments . Viral therapy can also stimulate innate and adaptive immune systems

that enhance antitumor responses .

As can be seen, most of the immunotherapy methods used in GBM have been effective in the preclinical and early clinical

stages but have not been very successful in the higher stages of the clinical trials (Table 1). There are several reasons for

such an inadequate response in GBM patients. High heterogeneity of GBM between patients and high plasticity, even in

one patient at different times, makes GBM resistant to immunotherapy . Evaluation of tumor markers before treatment

and development of personalized medicine can lead to overcoming GBM heterogeneity and plasticity. The severe

immunosuppressive GME appears to be another barrier to immunotherapy. Immunosuppression in GME undergoes

numerous and complex mechanisms so that single-arm immunotherapy cannot break this tolerance. Besides local

immune suppression, GBM can suppress systemic immunity in the patient . The GME-infiltrated T cells are

mainly differentiated to regulatory T cells (Tregs) due to the high levels of tumor growth factor (TGF)-β and indoleamine-

2,3-dioxygenase (IDO) in the GME . IDO metabolizes tryptophan to kynurenine, leading to a change in the

phenotype of microglial cells (CNS-resident macrophages) or tumor-associated macrophages (TAMs) to an M2 phenotype

. M2-TAMs promote tumor progression by further suppressing immune responses and expressing ICs .

On the other hand, the use of corticosteroids in GBM to reduce cerebral edema increases immunosuppression and

reduces immunotherapy effects . Interestingly, studies have shown that radiotherapy and chemotherapy, such as TMZ

in some cases of GBM, can increase immunosuppression and decrease the effects of ICI, which challenges combination

therapy . Furthermore, the low mutational burden in GBM limits neoantigen production and presentation to the

adaptive immune system . All of the mentioned mechanisms make GBM an immunologically cold tumor. Knowing the

different aspects of immunosuppression in GBM makes it possible to achieve a successful strategy in GBM

immunotherapy by targeting several pathways simultaneously.
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