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  Lonidamine (LND) is an indazole derivative that was first introduced in 1979 as an anti-spermatogenic agent.

Later, LND was found to have antitumor activity by interfering with the energy metabolism, especially its action on

tumor mitochondria.  Furthermore, some studies also indicated that LND inhibited hexokinase II (HK-II), followed by

the inhibition of glycolytic pathway, as well as pentose phosphate pathway (PPP), leading to the reduction of

NADPH and GSH levels. Thus, it was usually used as a glycolytic inhibitor for antitumor research.
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1. Introduction

Lonidamine (LND) is an indazole derivative (Figure 1A) that was first introduced in 1979 as an anti-spermatogenic

agent . Later, LND was found to have antitumor activity by interfering with the energy metabolism, especially its

action on tumor mitochondria. First, LND inhibits lactate export and the uptake of pyruvate into mitochondria by the

inhibition of proton-linked monocarboxylate transporter (MCT) and mitochondrial pyruvate carrier (MPC),

respectively. However, the IC  of LND against MPC is an order of magnitude lower than the IC  against MCT .

Therefore, LND-mediated inhibition of MPC is likely to play a key role. Second, LND inhibits complexes I and II of

the mitochondrial electron transport chain . By measuring the succinate dehydrogenase (SDH) activity in complex

II and the succinate-ubiquinone reductase (SQR) activity (determined via the formation of ubiquinone by complex

II), the inhibition of SQR activity was found to be much greater than that of SDH activity at all LND concentrations

tested [3]. Therefore, LND is thought to inhibit complex II activity by interfering with the ubiquinone binding sites of

succinate dehydrogenase C (SDHC) and succinate dehydrogenase D (SDHD) (Figure 2) . The inhibition of

mitochondrial complex II can induce reactive oxidative species (ROS) production to promote cell apoptosis. Third,

LND disrupts the mitochondrial transmembrane potential by directly affecting the mitochondrial permeability

transition (PT) pore which is under the control of the members of the Bcl-2 family . After LND treatment, AKT

phosphorylation also decreases, which promotes the transfer of p53 from cytoplasm to mitochondria, leading to cell

apoptosis . Furthermore, some studies also indicated that LND inhibited hexokinase II (HK-II), followed by the

inhibition of glycolytic pathway, as well as pentose phosphate pathway (PPP), leading to the reduction of NADPH

and GSH levels. Thus, it was usually used as a glycolytic inhibitor for antitumor research (Figure 2) . By using

P NMR technology, LND was shown to produce intracellular acidification and de-energization in vitro and in vivo,

and it exhibited selectivity against tumors in vivo without obvious toxic effects on skeletal muscle and brain .

Indeed, Nath et al. further showed that LND selectively reduced tumor intracellular pH and ATP levels, and

sensitized DB-1 melanoma xenografts to melphalan . LND has also been demonstrated to induce a cytotoxic

autophagic response in glioblastoma cells . LND triggers late autophagy, which eventually leads to the transition
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from autophagy to apoptosis that occurred before phosphatidylinositol disappeared and p-AKT decreased .

Currently, LND has been explored for the treatment of non-small cell lung cancer (NSCLC) , breast cancer ,

colon cancer , astrocytoma , squamous cell carcinoma, human glioma, and so on . The research on LND’s

derivative, adjudin (ADD), is also worthy of attention (Figure 1B). Similarly, ADD was also originally used as an anti-

spermatogenic agent . It was not until 2013 that Xie et al. determined, for the first time, that ADD also had

anticancer properties, and consequently, revealed its potential clinical utility as a chemotherapeutic agent . In

this study, ADD was proved to be effective for at least fifteen cancer cell lines . When in combination with other

chemotherapeutics, ADD also showed a potent synergistic anticancer effect . ADD also causes mitochondrial

dysfunction to interfere with energy metabolism and induce mitochondrial apoptosis pathway, thus triggering cell

apoptosis and autophagy . As ADD, a simple LND derivative, also shows potential anticancer effects, we will

briefly summarize the drug combinations related to ADD in recent years as well.

Figure 1. Molecular structures of (A) LND and (B) ADD. LND and ADD are indazole derivatives. Their chemical

names are 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid and 1-(2,4-dichlorobenzyl)-1H-indazole-3-

carbohydrazide, respectively.
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Figure 2. Underlying mechanisms of LND-mediated antitumor activity. (1) LND inhibits the lactate export and the

uptake of pyruvate into mitochondria by the inhibition of proton-linked monocarboxylate transporter (MCT) and

mitochondrial pyruvate carrier (MPC), respectively. (2) LND inhibits complexes I and II by interfering with

ubiquinone reduction, leading to ATP depletion and ROS production. (3) LND affects the mitochondrial permeability

transition (PT) pore which is under the control of the members of the Bcl-2 family. (4) LND inhibits glycolysis

through the inhibition of hexokinase II (HK-II), thereby reducing the levels of NADPH and glutathione (GSH) in part

by the inhibition of the pentose phosphate pathway (PPP) flux.

As a single chemotherapeutic agent, LND was found to be ineffective or only mildly effective in preventing the

growth of cancer cells in vivo and in vitro, because its anticancer effects are transient and reversible . In the

phase II study of oral LND, the most common side effects were myalgia, weakness, and lethargy, testicular pain

was also observed . Myalgia displayed dose-limiting toxicity, occurring at a dose of 300–400 mg/m  .

Severe vomiting and signs of acute hepatic and pancreatic toxicity were observed when the dose exceeded 400

mg/m  during intravenous administration . However, if receiving oral LND, it will face the problem of poor

bioavailability.

Therefore, in order to reduce the toxic and side effects of LND by intravenous administration, it can be used in

combination with other chemotherapeutic agents or physical therapies, or be loaded into a system with tumor

targeting properties to reduce the damage to normal cells . Interestingly, LND has no common side effects
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of traditional anticancer drugs, such as bone marrow suppression, alopecia, gastrointestinal mucosal necrosis, and

does not cause somatic and germ cell mutations . Moreover, because the association of energy metabolism of

tumor cells with chemo- or radio-resistance , and LND-mediated inhibition of glycolysis and mitochondrial

respiration , from the point of combination treatment, LND can potentiate the anticancer effects of

chemotherapeutic drugs or enhance the therapeutic efficacy when in combination with physical therapies. In view

of the tumor selectivity of LND, in this case, the dose of chemotherapeutic drugs may be decreased while avoiding

or maximally decreasing the toxic and side effects. The most critical characteristic of LND is its selective activity

against a wide range of tumors, with little effect on normal tissues at doses below 400 mg/m  (oral or intravenous)

. Tumor selectivity and low toxicity to normal tissues are key features that make LND an attractive sensitizer to

enhance the anticancer activity of chemotherapeutic drugs and physical therapies.

In addition to being a chemosensitizer, in the past five years, LND has often been coupled with targeted agents or

other chemotherapeutics and encapsulated in a nanometer system to better improve its tumor targeting and the

effectiveness of combined drugs . For instance, in 2019, Cheng et al. developed the mitochondria-targeted

LND (Mito-LND) by conjugating LND to triphenylphosphonium cation (TPP ) via a linker aliphatic chain with

reference to other mitochondrial targeting agents such as Mito-Q and Mito-Metformin using Co-Q and metformin as

bioactive molecules, respectively. Compared to free LND, Mito-LND not only had significantly higher cytotoxicity to

lung cancer cells, but also showed inhibition of mice tumor xenografts and lung cancer brain metastasis in vivo by

the inhibition of mitochondrial bioenergetics, induction of ROS and mitochondrial oxidative stress, downregulation

of the AKT/mTOR/p70S6K signaling pathway, and induction of cytotoxic autophagy . Especially, Mito-LND

caused cell death mainly by autophagy rather than caspase-dependent apoptosis, as indicated by the conversion

of LC3-I to autophagic LC3-II, markedly increased autophagic vacuoles, and flow cytometric analysis. In tumor

tissues from mice, Mito-LND-induced autophagy was also observed. Of note, Mito-LND showed no observable

toxicity in mice even at doses up to 50 times (375 μmol/kg) the effective inhibitory dose (7.5 μmol/kg) when

administered for eight weeks.

3. LND Sensitizes Tumor Cells to Physical Therapy

After exposure to chemotherapeutics, cell survival can be modified by the post-exposure environment. Therefore,

oncologists and pharmacologists are trying to treat cancer using new therapies combining chemotherapeutics other

than traditional chemotherapeutics alone. LND as a traditional anticancer candidate drug; it is capable of

sensitizing tumors to physical therapy. The following section is a brief overview of LND in combination with

radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT) (Table 2).

Table 2. Combination of LND with physical therapy.

Therapy
Method Mechanism of Action Tumor Type Synergistic

Mechanism Ref.

Radiotherapy
(RT)

Cancer cells exhibit
sensitivity to radiation,

poor tolerance, while the

BALB/c, C H/He mice
fibrosarcoma cells (in

vivo); HeLa cells (in vivo)

LND interferes
with the energy-
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Therapy
Method Mechanism of Action Tumor Type Synergistic

Mechanism Ref.

normal cell population is
opposite

dependent PLD
repair process.

Hyperthermia
(HT)

Cancer cells can easily
store more heat than

normal cells. When heated
to 40–43 °C, cancer cells

undergo membrane
structure destruction,

cytoskeleton deformation,
DNA synthesis inhibition,

and blood vessel damage,
thus resulting in death.

BALB/c mice fibrosarcoma
cells (in vivo); HeLa cells
(in vivo); human glioma

cells (in vivo); Head-neck
squamous cells (in vivo);

DB-1 melanoma
xenografts (in vivo);
R3327G rat prostatic

adenocarcinoma (in vivo)

(1) HT can lead
t78o the formation

of condensed
mitochondria,

which LND targets
more easily.

(2) HT increases
blow flow and drug

delivery.
(3) HT increases

cell uptake of
drugs.

(4) LND inhibits
the repair of HT-

induced (sub)lethal
damage as well as

the proteins
involved in cell

survival.

Photodynamic
therapy (PDT)

PDT can cause
mitochondrial damage,

causing ATP consumption
and ROS production.

MCF-7 human breast
carcinoma cells (in vitro)

LND and PDT
synergistically

destruct
mitochondrial

structure,
decrease

intracellular ATP
level, and induce
the generation of

ROS.
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