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Lonidamine (LND) is an indazole derivative that was first introduced in 1979 as an anti-spermatogenic agent.
Later, LND was found to have antitumor activity by interfering with the energy metabolism, especially its action on
tumor mitochondria. Furthermore, some studies also indicated that LND inhibited hexokinase Il (HK-II), followed by
the inhibition of glycolytic pathway, as well as pentose phosphate pathway (PPP), leading to the reduction of
NADPH and GSH levels. Thus, it was usually used as a glycolytic inhibitor for antitumor research.
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| 1. Introduction

Lonidamine (LND) is an indazole derivative (Figure 1A) that was first introduced in 1979 as an anti-spermatogenic
agent W, Later, LND was found to have antitumor activity by interfering with the energy metabolism, especially its
action on tumor mitochondria. First, LND inhibits lactate export and the uptake of pyruvate into mitochondria by the
inhibition of proton-linked monocarboxylate transporter (MCT) and mitochondrial pyruvate carrier (MPC),
respectively. However, the ICs, of LND against MPC is an order of magnitude lower than the ICg, against MCT [,
Therefore, LND-mediated inhibition of MPC is likely to play a key role. Second, LND inhibits complexes | and Il of
the mitochondrial electron transport chain [. By measuring the succinate dehydrogenase (SDH) activity in complex
Il and the succinate-ubiquinone reductase (SQR) activity (determined via the formation of ubiquinone by complex
I), the inhibition of SQR activity was found to be much greater than that of SDH activity at all LND concentrations
tested [3]. Therefore, LND is thought to inhibit complex Il activity by interfering with the ubiquinone binding sites of
succinate dehydrogenase C (SDHC) and succinate dehydrogenase D (SDHD) (Figure 2) Bl The inhibition of
mitochondrial complex Il can induce reactive oxidative species (ROS) production to promote cell apoptosis. Third,
LND disrupts the mitochondrial transmembrane potential by directly affecting the mitochondrial permeability
transition (PT) pore which is under the control of the members of the Bcl-2 family 4. After LND treatment, AKT
phosphorylation also decreases, which promotes the transfer of p53 from cytoplasm to mitochondria, leading to cell
apoptosis RIE. Furthermore, some studies also indicated that LND inhibited hexokinase Il (HK-I1), followed by the
inhibition of glycolytic pathway, as well as pentose phosphate pathway (PPP), leading to the reduction of NADPH
and GSH levels. Thus, it was usually used as a glycolytic inhibitor for antitumor research (Figure 2) &l By using
31p NMR technology, LND was shown to produce intracellular acidification and de-energization in vitro and in vivo,
and it exhibited selectivity against tumors in vivo without obvious toxic effects on skeletal muscle and brain .
Indeed, Nath et al. further showed that LND selectively reduced tumor intracellular pH and ATP levels, and
sensitized DB-1 melanoma xenografts to melphalan 29, LND has also been demonstrated to induce a cytotoxic

autophagic response in glioblastoma cells €. LND triggers late autophagy, which eventually leads to the transition
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from autophagy to apoptosis that occurred before phosphatidylinositol disappeared and p-AKT decreased €.
Currently, LND has been explored for the treatment of non-small cell lung cancer (NSCLC) 11, breast cancer 12,
colon cancer 131, astrocytoma (14] squamous cell carcinoma, human glioma, and so on (15 The research on LND's
derivative, adjudin (ADD), is also worthy of attention (Figure 1B). Similarly, ADD was also originally used as an anti-
spermatogenic agent 18, |t was not until 2013 that Xie et al. determined, for the first time, that ADD also had
anticancer properties, and consequently, revealed its potential clinical utility as a chemotherapeutic agent 2. In
this study, ADD was proved to be effective for at least fifteen cancer cell lines 2. When in combination with other
chemotherapeutics, ADD also showed a potent synergistic anticancer effect 181191 ADD also causes mitochondrial
dysfunction to interfere with energy metabolism and induce mitochondrial apoptosis pathway, thus triggering cell
apoptosis and autophagy 2. As ADD, a simple LND derivative, also shows potential anticancer effects, we will

briefly summarize the drug combinations related to ADD in recent years as well.
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Figure 1. Molecular structures of (A) LND and (B) ADD. LND and ADD are indazole derivatives. Their chemical
names are 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid and 1-(2,4-dichlorobenzyl)-1H-indazole-3-

carbohydrazide, respectively.
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Figure 2. Underlying mechanisms of LND-mediated antitumor activity. (1) LND inhibits the lactate export and the
uptake of pyruvate into mitochondria by the inhibition of proton-linked monocarboxylate transporter (MCT) and
mitochondrial pyruvate carrier (MPC), respectively. (2) LND inhibits complexes | and Il by interfering with
ubiquinone reduction, leading to ATP depletion and ROS production. (3) LND affects the mitochondrial permeability
transition (PT) pore which is under the control of the members of the Bcl-2 family. (4) LND inhibits glycolysis
through the inhibition of hexokinase Il (HK-II), thereby reducing the levels of NADPH and glutathione (GSH) in part
by the inhibition of the pentose phosphate pathway (PPP) flux.

As a single chemotherapeutic agent, LND was found to be ineffective or only mildly effective in preventing the
growth of cancer cells in vivo and in vitro, because its anticancer effects are transient and reversible 29, In the
phase Il study of oral LND, the most common side effects were myalgia, weakness, and lethargy, testicular pain
was also observed 21, Myalgia displayed dose-limiting toxicity, occurring at a dose of 300-400 mg/m? [22[23],
Severe vomiting and signs of acute hepatic and pancreatic toxicity were observed when the dose exceeded 400
mg/m? during intravenous administration 24, However, if receiving oral LND, it will face the problem of poor

bioavailability.

Therefore, in order to reduce the toxic and side effects of LND by intravenous administration, it can be used in
combination with other chemotherapeutic agents or physical therapies, or be loaded into a system with tumor

targeting properties to reduce the damage to normal cells [24123]126] |nterestingly, LND has no common side effects
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of traditional anticancer drugs, such as bone marrow suppression, alopecia, gastrointestinal mucosal necrosis, and
does not cause somatic and germ cell mutations 21, Moreover, because the association of energy metabolism of
tumor cells with chemo- or radio-resistance 24, and LND-mediated inhibition of glycolysis and mitochondrial
respiration &, from the point of combination treatment, LND can potentiate the anticancer effects of
chemotherapeutic drugs or enhance the therapeutic efficacy when in combination with physical therapies. In view
of the tumor selectivity of LND, in this case, the dose of chemotherapeutic drugs may be decreased while avoiding
or maximally decreasing the toxic and side effects. The most critical characteristic of LND is its selective activity
against a wide range of tumors, with little effect on normal tissues at doses below 400 mg/m? (oral or intravenous)
(291 Tumor selectivity and low toxicity to normal tissues are key features that make LND an attractive sensitizer to

enhance the anticancer activity of chemotherapeutic drugs and physical therapies.

In addition to being a chemosensitizer, in the past five years, LND has often been coupled with targeted agents or
other chemotherapeutics and encapsulated in a nanometer system to better improve its tumor targeting and the
effectiveness of combined drugs 2212811291 For instance, in 2019, Cheng et al. developed the mitochondria-targeted
LND (Mito-LND) by conjugating LND to triphenylphosphonium cation (TPP*) via a linker aliphatic chain with
reference to other mitochondrial targeting agents such as Mito-Q and Mito-Metformin using Co-Q and metformin as
bioactive molecules, respectively. Compared to free LND, Mito-LND not only had significantly higher cytotoxicity to
lung cancer cells, but also showed inhibition of mice tumor xenografts and lung cancer brain metastasis in vivo by
the inhibition of mitochondrial bioenergetics, induction of ROS and mitochondrial oxidative stress, downregulation
of the AKT/mTOR/p70S6K signaling pathway, and induction of cytotoxic autophagy [(28l. Especially, Mito-LND
caused cell death mainly by autophagy rather than caspase-dependent apoptosis, as indicated by the conversion
of LC3-1 to autophagic LC3-Il, markedly increased autophagic vacuoles, and flow cytometric analysis. In tumor
tissues from mice, Mito-LND-induced autophagy was also observed. Of note, Mito-LND showed no observable
toxicity in mice even at doses up to 50 times (375 pmol/kg) the effective inhibitory dose (7.5 pmol/kg) when

administered for eight weeks.

| 3. LND Sensitizes Tumor Cells to Physical Therapy

After exposure to chemotherapeutics, cell survival can be modified by the post-exposure environment. Therefore,
oncologists and pharmacologists are trying to treat cancer using new therapies combining chemotherapeutics other
than traditional chemotherapeutics alone. LND as a traditional anticancer candidate drug; it is capable of
sensitizing tumors to physical therapy. The following section is a brief overview of LND in combination with
radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT) (Table 2).

Table 2. Combination of LND with physical therapy.

Therapy . . Synergistic
Method Mechanism of Action Tumor Type Mechanism Ref.
Radiotherapy Cancer cells exhibit BALB/c, C3H/He mice LND interferes (29]
(RT) sensitivity to radiation, fibrosarcoma cells (in with the energy- [(21]
poor tolerance, while the vivo); HeLa cells (in vivo)
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Therapy . . Synergistic
Method Mechanism of Action Tumor Type Mechanism Ref
normal cell population is dependent PLD 2]
opposite repair process. (3]
(1) HT can lead
t780 the formation
of condensed
mitochondria,
. which LND targets
Cancer cells can easily L .
BALB/c mice fibrosarcoma more easily.
store more heat than S .
cells (in vivo); HelLa cells (2) HT increases [34]
normal cells. When heated S .
. (in vivo); human glioma blow flow and drug  [35
to 40—-43 °C, cancer cells R .
. cells (in vivo); Head-neck delivery. [36]
Hyperthermia undergo membrane o .
. squamous cells (in vivo); (3) HT increases [37]
(HT) structure destruction,
. DB-1 melanoma cell uptake of [38]
cytoskeleton deformation, XeTIOgIaTS (nhviva): drugs
DNA synthesis inhibiti ; 1391
synthesis inhibition, R3327G rat prostatic (4) LND inhibits
and blood vessel damage, . S .
thus resulting in death adenocarcinoma (in vivo) the repair of HT-
9 ' induced (sub)lethal
damage as well as
the proteins
involved in cell
survival.
LND and PDT
synergistically
destruct
PDT can cause mitochondrial (401
Photodynamic mitochondrial damage, MCF-7 human breast structure, [41]
therapy (PDT) causing ATP consumption carcinoma cells (in vitro) decrease 42]
and ROS production. intracellular ATP [43]
level, and induce
the generation of
ROS.
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