Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9 | Encyclopedia.pub

Enhancing Antisense Oligonucleotide-Based
Therapeutic Delivery with DG9

Subjects: Medicine, Research & Experimental

Contributor: Umme Sabrina Haque , Toshifumi Yokota

Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of
human disorders. Charge-neutral phosphorodiamidate morpholino oligomers (PMOs) have promising biological
and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of
these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked
PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and
intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a
versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique
structural features. Notably, in the context of PMOs, DG9 has shown promise in enhancing delivery while

maintaining a favorable toxicity profile.

antisense oligonucleotides cell penetrating peptides delivery DG9 peptide

| 1. Introduction

The advancement of antisense oligonucleotides (ASOs) has brought about a profound change in the field of
genetic therapeutics, offering a promising avenue for addressing a diverse array of diseases on a molecular level.
ASOs are short synthetic nucleic acid analogs that offer a revolutionary means to modulate gene expression by
precisely interacting with RNA transcripts. The history of ASO can be traced back to the pioneering work of
Zamecnik and Stephenson in early 1970, who first proposed the concept of using synthetic oligonucleotides to
regulate eukaryotic gene expression in cultured cells through sequence-specific hybridization with RNA 2 | ater,
the pharmacokinetic properties of ASOs, such as stability, reduced susceptibility to nuclease degradation,
specificity, and cellular absorption, have been greatly improved by developments in oligonucleotide chemistry,
including the introduction of chemical modifications and different backbone structures, which transformed them

from theoretical concepts into potentially effective therapeutic agents .

ASOs have been successfully employed in treating a wide range of diseases, including Duchenne Muscular
Dystrophy (DMD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and many more. This
success led to the regulatory approval of 10 ASO-based drugs ¥ and many antisense drug candidates for clinical
trials to treat cardiovascular, metabolic, endocrine, neurological, neuromuscular, inflammatory, and infectious
diseases . This demonstrates the dynamic nature of ASO-mediated therapy. Despite being a promising approach,
it is widely accepted that the delivery of ASO treatments to specific tissues is limited by factors such as intracellular

trafficking, degradation in biological fluids, and transportation across cellular barriers 8. Although chemical
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modifications have significantly improved their metabolic stability as well as their affinities for RNA targets and
have, to some extent, reduced off-target effects, no chemical modification has significantly improved cellular uptake

or tissue targeting.

Cell-penetrating peptides (CPPs) or peptide transduction domains (PTDs) are one of the many approaches that
have been developed to improve the delivery of oligonucleotides. CPPs are small peptides with the ability to
transport cargos, including ASOs, across cellular barriers and hereby offer the potential to improve ASOs’ cellular
uptake and intracellular distribution, enhancing therapeutic outcomes and reducing the required dosage . The
initial CPP was introduced several decades ago, and ever since, there has been an ongoing endeavor to enhance

cell-penetrating peptides for improved oligonucleotide delivery and enhanced pharmacological properties &,

Particularly in the context of phosphorodiamidate morpholino oligomers (PMOs), R6G, PiP (PNA/PMO Internalizing
Peptides), and DG9 have captured interest among the CPPs for their potential to improve ASO-mediated therapy.
PMOs have shown effectiveness in treating genetic diseases, but their poor cellular absorption continues to be a
major drawback. Due to its high efficacy and low toxicity, DG9 has become a promising CPP for improving the

intracellular transport of PMOs since it holds the prospect of improved therapeutic advantages 219,

| 2. The Mode of Action of Antisense Oligonucleotide

Antisense oligonucleotides (ASOs) are synthetic, single-stranded nucleic acid molecules targeted for mRNA,
generally comprised of ~18-30 nucleotides with a variety of chemical structures 111, ASOs form a DNA-RNA hybrid
by binding specific RNA sequences through Watson—Crick base pairing to modulate gene expression 22 The
functional mechanism of ASO can be broadly categorized into two main modes of action: RNase H-mediated

degradation and steric hindrance 121,

RNase H-mediated degradation: When DNA-based oligonucleotides, also known as gapmers, bind to their
respective mRNA sequences, they can recruit endogenous RNase H enzymes. RNase H recognizes the RNA—
DNA duplex and catalyzes the degradation of RNA, leading to the reduction in the target RNA and gene silencing
(Figure 1a) (131, This strategy has been employed widely to suppress disease-causing or disease-modifying genes.
Fomivirsen, mipomersen, and inotersen are the three RNase H-competent ASOs that have so far acquired

regulatory approval 22!,
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Figure 1. Functional mechanism of antisense oligonucleotide-mediated modulation of gene expression. (a) RNase
H mediated degradation of RNA by antisense oligonucleotides. (b) Suppressing the translation or splicing

modulation by an antisense oligonucleotide through steric hindrance mechanisms.

Steric hindrance: Apart from RNase H-mediated breakdown, ASOs can interfere with RNA—-RNA or RNA—-Protein
interaction by blocking certain regions within the target transcript. This results in the prevention of translation rather
than the lowering of transcript levels 4. The best-known application of this mode of action is splicing modulation,
which can cause either exclusion (exon skipping) or retention (exon inclusion) of specific exon/exons by targeting
splice sites or exonic/intronic inclusion signals, respectively 13I181 Typically, this approach can be used both for
restoration of the translational reading frame to have functional protein synthesis or for disruption of translation of
the target gene 718 (Figure 1b). Eteplirsen, golodirsen, nusinersen, viltolarsen, casimersen, milasen, and

atipeksen are the splice-switching ASOs that have received FDA approval to date [11][19][20][21]

3. Molecular Mechanism of Cellular Uptake and Intracellular
Distribution of Antisense Oligonucleotides

The effectiveness of antisense oligonucleotides (ASOs) as therapeutic agents depends significantly on cellular
uptake and intracellular distribution. To have the desired effects, ASOs must efficiently penetrate cells and locate
their target locations. After intravenous, subcutaneous, or direct administration, ASOs reach the bloodstream,
where they can be broken down by nucleases 22, Once they reach the target organ, the cellular uptake process
can be achieved in several ways, such as phagocytosis, macropinocytosis, micropinocytosis via clathrin and
caveolin-independent pathways, caveolar internalization, and classical clathrin-mediated endocytosis. Following
cellular uptake, ASOs are internalized into early endosomes and then late endosomes, regulated by Rab, SNARE,

and tethering proteins. A percentage of ASO drugs, possibly a very tiny portion, are released from late endosomes
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into the cytoplasm, where they target mMRNAs or pre-mRNAs in the cytoplasm or the nucleus to carry out their
therapeutic effects. Nuclear entry can be actively mediated by the nuclear pore mechanism or passively via simple
diffusion 23, Many small cellular proteins, such as COPII, can facilitate nuclear trafficking. However, the process is
not entirely known 22, The target of different ASOs is located at different subcellular sites. For RNase H-mediated
mRNA degradation, the ASO drugs need to reach either the cytoplasm (ribosomes) or the nucleus 24, In contrast,

for exon skipping/inclusion, ASOs must be present in the spliceosomes of the nucleus 22!,

| 4. Challenges Associated with ASO Delivery

Although ASOs have great potential as therapeutic agents, their efficient delivery faces several difficulties. These
difficulties are associated with the physiochemical characteristics of ASO molecules, such as their large size,
molecular weight (single-stranded ASOs are ~4-10 kDa, double-stranded siRNAs are ~14 kDa), and negative
charge, which hinders passive diffusion across the cell membrane. ASOs predominantly rely on endocytosis for
cellular uptake, which might be ineffective and lead to entrapment in endosomes or lysosomes, leading to
lysosomal degradation. So, once inside the cell, ASO must escape endosomal entrapment to gain access to the
target region in the cytoplasm or nucleus 28, Apart from that, for the systemically administered ASOs to be
effective, they need to avoid renal clearance 2728 resist nuclease degradation both in the extracellular fluid and
intracellular compartment 22, and avoid removal by the reticuloendothelial system, which includes mononuclear
phagocytes, liver sinusoidal endothelial cells, and Kupffer cells 9. A study reported that intravenous administration
of an AON resulted in 40% and 18% accumulation in the liver and kidneys, respectively B4,

Due to these challenges, to date, most of the approved oligonucleotide treatments are delivered either locally (for
example, to the eye or spinal cord) or to the liver. The eye is chosen as a target for ASO delivery (for example,
Pegaptanib and Fomivirsen) due to its accessibility, anatomical considerations, and immune-privileged status 111,
Although ocular delivery of ASOs has benefits, there are still obstacles to be overcome, including getting through
anatomical obstacles (such as the blood-retinal barrier), maximizing ASO stability, and pharmacokinetics for long-
lasting therapeutic effects. For ASOs targeting the CNS, direct delivery into the cerebrospinal fluid via lumber
puncture is most commonly used (for example, Nusinersen) 22, However, it should be noted that this method
requires expertise and specialized equipment and carries a small risk of complications associated with invasive

procedures.

5. Strategies to Enhance the Stability and Delivery of
Antisense Oligonucleotides

5.1. Chemical Modification

Antisense oligonucleotides were initially employed as synthesized, unaltered DNA, which turned out to be
extremely vulnerable to exonuclease and endonuclease degradation 22! (Figure 2). Chemical modifications of
antisense oligonucleotides can enhance stability, improve target binding affinity and biodistribution, and provide

protection against nuclease-mediated degradation. Modification of the nucleic acid backbone, the ribose sugar
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moiety, and the nucleobase itself have been extensively employed to improve the drug-like properties of antisense
oligonucleotides [281(34],
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Figure 2. Some common chemical modifications used in antisense oligonucleotide chemistry. (a) Schematic of an
RNA nucleotide with a common modification site. (b) Ribose sugar modification: 2'-OMe, 2'-O-methyl; 2'-MOE, 2'-
O-methoxyethyl; 2'-Fluoro; tcDNA, tricyclo DNA; LNA, locked nucleic acid; cEt, constrained ethyl bridged nucleic
acid; ENA, ethylene-bridged nucleic acid. (¢) Backbone modification: PS, phosphorothioate. (d) Nucleobase
modification: 5-methylcytidine, 5-methyluridine. (e) Alternative chemistries: PMO, phosphorodiamidate morpholino
oligonucleotide; PNA, peptide nucleic acid. Created with BioRender.com
(https://app.biorender.com/illustrations/64c764c0257fb4bbb5688afa (Accessed on 2 August 2023).

5.2. Bioconjugates

While chemical modifications are required to protect ASOs from exonucleases and prolong their stability, the next
challenge is ASO passage across biological barriers. These barriers include the vascular endothelial barrier, cell
membranes, and intracellular compartments. Additionally, achieving specific cell/tissue targeting and a reduction in
clearance from circulation is essential 2. Improving ASO delivery potential can be achieved through the
conjugation of different moieties that can direct the drug to specific tissues and enhance internalization.
Bioconjugates are distinct molecular entities with precise stoichiometry, which ensures well-defined
pharmacokinetic properties and simplifies large-scale synthesis. Additionally, bioconjugates tend to have a small
size, which often results in favorable biodistribution profiles [2. Bioconjugates usually promote interaction with cell-
type-associated receptors, consequently enhancing delivery to the target tissue and internalization by receptor-
mediated endocytosis 28, There are different types of conjugates available, including lipid-based bioconjugates
(e.g., cholesterol and its derivatives) 738139 peptide-based bioconjugates (e.g., cell-penetrating peptides) 2941l
(42)[431[44]145] * gptamers 48], antibodies 4748l sugars (for example, N-acetylgalactosamine (GalNAc)) 42Bd and
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polymers (e.g., PEG) (Table 1). The selection of the appropriate bioconjugate depends on several factors,

including the application goals, specific requirements of the ASO delivery system, the intended therapeutic

application, and safety considerations. Due to the effectiveness of bioconjugates in increasing the efficacy of ASO

delivery, bioconjugated compounds are present in four of the five FDA-approved siRNA medications 21,

Table 1. Brief description of the most commonly used bioconjugates in the delivery of antisense oligonucleotides.

Bioconjugates

Lipid-based
conjugates

GalNac
conjugates

Antibody and
Aptamer
conjugates

Polymer
conjugates

Brief Introduction

Lipid-based moieties are usually cholesterol and its derivatives,
which are covalently conjugated to siRNA and antagomir ASOs to
enhance delivery. This group of bioconjugates enhances in vivo
delivery by adhering to lipoprotein particles (such as HDL and LDL)
in the circulation and taking over the body’s natural system for lipid
uptake and transport B4, The overall hydrophobicity of SIRNAs
governs their in vivo association with the various classes of
lipoprotein, with the more hydrophobic conjugates preferentially
attaching to LDL and primarily being taken up by the liver. The less
lipophilic conjugates preferentially bind to HDL and are consumed by
the liver, adrenal glands, ovary, kidney, and small intestine. Another
lipid derivative, a-tocopherol (vitamin E), was also found to increase
the delivery of siRNA 1],

Trimeric GalNac is the most clinically successful tissue-targeting
ligand used in ASO delivery to date. GalNAc is a carbohydrate
moiety that has a high affinity for the highly expressed
asialoglycoprotein receptor 1 (ASGR1 and ASPGR) 21l This
interaction promotes the endocytosis of PO ASOs and siRNAs into
hepatocytes. Givosiran, a GalNAc-conjugated siRNA, was granted
FDA approval for the treatment of acute hepatic porphyria in
November 2019 as a result of its remarkable success 111,

Antibody—RNA bioconjugates offer a promising strategy for nucleic
acid therapeutics; however, their utility for oligonucleotide delivery is
still in the early stages of development. Antibodies are useful for the
targeted delivery of oligonucleotides to cells or tissues that other
methods cannot reach since they are very selective in recognizing
target antigens L5 Aptamers bind to their specific target proteins
with high affinity, just like antibodies do. Aptamers are regarded as
chemical antibodies and have demonstrated many advantages over
antibodies, including being easier and less expensive to produce
(i.e., through chemical synthesis), smaller size, and lower
immunogenicity (1],

PEG is a non-ionic, hydrophilic polymer with a wide range of
applications. It is widely used to prolong blood circulation and
improve drug efficacy. PEGylation, which involves covalently adding
PEG to a drug, improves the stability of ASOs and reduces renal
excretion by forming a protective hydration layer around them. PEG-
conjugated drugs have been found to have better pharmacokinetic
and pharmacodynamic properties in terms of the drug’s chemical

Benefits

Improved cellular

uptake.

Enhanced
pharmacokinetic

properties.

Improved
cell/tissue
targeting.

Enhanced
binding

specificity.

Improved in vivo

stability.
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Bioconjugates Brief Introduction Benefits
aspects of absorption, distribution, metabolism, excretion, and
toxicity (ADMET). Other polymers besides PEG have also received
attention, including poly(glycerol), poly(2-oxazoline), poly (amino
acid), and poly[N-(2-hydroxypropyl)methacrylamide] because they
are more ADMET-enhancing and less immunogenic (51,

Peptides are short chains of amino acids that can serve as carriers
for oligonucleotide delivery for their cell-specific targeting, cell-
penetrating, or endosomolytic properties (1],

Peptide-based
conjugates
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