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E-polymers, also known as conducting polymers, are a class of materials that exhibit both electrical conductivity and the

mechanical properties of polymers. The use of e-polymer materials in daily life is becoming increasingly widespread,

especially in the field of biology. Since the manufacturing cost of e-polymer implants is relatively low and e-polymers also

react, causing different chemical molecules to attach to the surface of the implant, they are more compatible with the

surrounding environment of the body. Some e-polymers are biodegradable in the body. If used for temporary implants, the

advantage of these polymers is that they can gradually degrade in the body after performing their functions, thereby

reducing the possibility of any long-term complications. Polymers and their composite materials can be designed to have

inherent tensile properties while maintaining their high performance, making them favorable candidates for the next

generation of skin-inspired electronic materials.
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1. Synthesis and Design of E-Polymers

In our daily lives, we encounter a wide variety of e-polymers, some of which are natural and some of which are synthetic

. Sufficient flexibility and biocompatibility compared to inorganic materials, as well as a range of electron transport,

chemical functionality, and tailored mechanical and optical properties, are all advantages that make e-polymers very

attractive . E-polymers utilize specialized chemical substances and composite materials for biological applications .

The synthetic-based electronic polymers encompass conducting hydrogels and ionogels, electrochemical transistors, and

topological supramolecular networks. The synthesis of e-polymers involves the polymerization of monomers with

conjugated structures to form long-chain polymers that exhibit electronic and optoelectronic properties.

E-polymers based on artificial synthesis are those that are synthesized from monomers or building blocks that are not

found in nature. Unlike polymers based on biomolecules, which use natural biopolymers as precursors, these polymers

are designed and synthesized using synthetic chemistry techniques . One approach to synthesizing polymers is

through step-growth polymerization, which involves gradually forming a polymer chain through reacting reactive groups at

the ends of the growing chain with functional groups on monomers . This technique can create various polymers with

different properties, such as polycarbonates, polyesters, and polyamides. Another approach is through chain-growth

polymerization, which involves initiating a polymerization reaction at a reactive site on a monomer, followed by adding

more monomers to the growing chain . In addition to these traditional polymerization methods, researchers are also

exploring new strategies for the synthesis of polymers, such as click chemistry, which involves the selective reaction of

two functional groups to form a covalent bond. Click reactions can be used to create complex polymer structures with

precise control over their size and shape . Polymer semiconductors have shown unique development advantages

in the development of human-integrated electronic products due to their solution processability and mechanical flexibility.

However, many of the functional characteristics required in this application field are transferred to conjugated polymers,

which are combined with effective charge transfer properties. In a study, Li et al. developed a “click-to-polymer” (CLIP)

synthesis strategy that utilizes click reactions to attach different types of functional units to pre-synthesized conjugated

polymer precursors  . It has been proven that the functionalized polymer of the method can still maintain good carrier

mobility. The functional properties of conjugated polymers can be greatly enriched by using this synthetic method.

The most commonly used materials for conventional planar electronic devices are inorganic, but the brittle and

mechanical properties of inorganic materials are unsuitable for applications in the biological field . Extensive research

has attempted to find alternative materials that bypass mechanical limitations without sacrificing functionality or

performance. Materials ranging from single-crystal silicon nanofilms, nanowires, and nanobelts to conjugated small-

molecule organic polycrystalline films are semiconductor component choices for such thin flexible devices and are

valuable for the research and development of flexible devices . Scalable bioelectronic devices are based on flexible

and conductive organic materials that allow rational interfaces for biocompatible integration with the human body. In a
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study, Jiang et al. developed a molecular engineering strategy based on topological supramolecular networks that

decouple competitive effects from multiple molecular components . Under physiological conditions, both high

conductivity and crack initiation strain were obtained, exhibiting direct photosensitivity to the cell scale. Further, the stable

EMG signals of the octopus were collected, local neuromodulation was conducted, and the specific activities of the organ

were conducted through the exemplary brainstem controller.

The basic principle of complementary metal-oxide-semiconductor technology is to utilize the complementary properties of

p-type and n-type metal-oxide-semiconductor materials to achieve an efficient operation of circuits . For the

construction of CMOS logic circuits and p–n junction devices, n-type semiconductors play a crucial role . Among

various electronic deficient components, cyanide-functionalized hydrocarbons are emerging to achieve high-performance

n-type organic and polymer semiconductors . In a study, Li et al. developed a large number of n-type organic

semiconductors and polymer semiconductors based on these cyanide functional compositions, which show many

suppressed frontier molecular orbitals (FMOs) compared to their non-cyanide analogs . The incorporation of cyanide

significantly inhibits FMOs in semiconductors, leading to an n-type transport. A series of new electron-deficient

components can be generated to build n-type organic and polymer semiconductors, which ultimately manifests itself in

enhanced device performance. For further development, integrated design strategies are a feasible way to achieve these

goals, thereby promoting the construction of high-performance n-type semiconductors. The synthesis of e-polymers based

on artificial synthesis offers a powerful tool for creating new materials with tailored properties and functions, including

applications in materials science, electronics, and biomedicine. In a study, Wang et al. presented a fundamentally

stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimeter  .

Consequently, transistor arrays essentially constitute stretchable skin electronics, including active matrices for sensing

arrays as well as analog and digital circuit elements.

2. Properties of E-Polymers

E-polymers have many properties and unique electrical and photovoltaic properties that allow them to be used in a variety

of applications . Many e-polymers have high strength and durability, making them ideal for use in products that

require durability and robustness. In addition, inherently stretchable semiconductor polymers use molecular structure

engineering, such as length and branching of alkyl side chains, molecular weight, and the design of blends containing

both rigid and flexible electronic blocks, to make the copolymers stretchable . E-polymers can conduct electricity,

which sets them apart from traditional insulating polymers. Depending on the chemical structure, doping, and processing

conditions, e-polymers have different conductivity properties ranging from semiconducting behavior to metallic

conductivity . E-polymers can exhibit interesting optical properties, including absorption and emission of light in

the visible and near-infrared regions. The energy band gap of an e-polymer can be tuned by changing its chemical

structure, thereby controlling the wavelength of the emitted light. E-polymers can transport charge carriers (electrons or

holes) through a conjugated backbone. The mobility of charge carriers in e-polymers is influenced by factors such as

polymer crystallinity, chain organization, and molecular weight. Efficient charge transport is critical for applications such as

organic solar cells, transistors, and conductive coatings. One of the advantages of e-polymers is their flexibility and

processability . They can be made into films, fibers, or coatings by a variety of techniques such as solution

casting, spin-coating, printing, or vapor phase deposition. This flexibility allows e-polymers to be integrated into flexible

and lightweight devices, opening up possibilities for wearable electronics and flexible displays. E-polymers can undergo

redox reactions, meaning they can be oxidized or reduced while maintaining a conjugated structure . Compared to

traditional inorganic semiconductors, e-polymers typically have good environmental stability. However, their stability can

vary depending on factors such as polymer selection, device design, and operating conditions . In addition, e-polymers

typically have potential environmental advantages over conventional inorganic electronic materials. They can be

synthesized from abundant renewable resources, and some polymers are biocompatible . Beneficially, e-polymer

devices have the potential for low-cost manufacturing processes, thereby reducing the environmental impact of the

manufacturing process. These properties of e-polymers make them attractive for a variety of applications, including

organic electronics, optoelectronics, sensors, energy conversion and storage, smart textiles, and biomedical devices .

A growing and widespread concern is the application of e-polymers to bio-interfaces and organisms . There is an

imperative demand to synthesize novel and sustainable e-polymers for bio-interface and organism applications that can

functionally replace the existing e-polymers or exhibit their properties and advantages. In a study, Kang et al. described a

new class of polymeric material crosslinked through rationally designed multistrength hydrogen-bonding interactions . A

supramolecular polymer film constructed through a mixture of strong and weak crosslinking hydrogen bonds is described.

The resulting polymer possesses various mechanical properties required for electronic skin applications, such as

stretchability, toughness, and the ability to autonomously self-heal even in water. As this polymer is easy to manipulate,
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capacitive strain-sensing electronic skins are designed and fabricated to be highly resilient and resistant to vandalism.

The exhibits feature an advanced structure, excellent thermo–mechanical properties, higher stability, lower flammability,

better processing conditions, and improved appearance. In a study, Li et al. demonstrated stretchable transistor arrays

and active matrix circuits with moduli below 10 kPa  . Due to improved adaptability to irregular and dynamic surfaces, an

ultrasoft device fabricated using a soft sandwich design enables electrophysiological recording of the isolated heart. High

adaptability, spatial stability, and minimal impact on ventricular pressure were achieved. Additionally, testing has

demonstrated the benefits of inhibiting foreign body reactions for long-term implantation, resulting in superior in vivo

biocompatibility. E-polymers have similar electrical and electrochemical properties to traditional semiconductors and

metals, thus receiving widespread attention in both basic and practical research . The electrical conductivity of

organic radical polymers is much higher than expected, and organic radical polymers have unusual electronic properties

. Conductivity can be improved in two approaches. On the one hand, this can be accomplished by the synthesis of

molecular structures with a relatively large dispersion of π-bonds; the higher the dispersion, the improved conductivity of

the conjugated structure. Consequently, improving the intrinsic conductivity of polymers from the perspective of the

molecular structure is an optimal solution. In addition, improving production processes and preparing polymer materials

with larger molecular weights and more regular structures are also important means to improve their conductivity. On the

other hand, the chemical doping of conjugated structures is an effective way to enhance the conductivity of polymer

materials by introducing anions (p-type doping) or cations (n-type doping) on the polymer chain through doping methods

to reduce energy barriers and facilitate electron migration. The commonly used dopants include iodine, arsenic

pentafluoride, antimony hexafluoride, silver perchlorate, etc. After the dopants are saturated, the conductivity of the

material will not change . Therefore, it will be important to find suitable doping agents and dope them reasonably

with conductive polymers.

3. Engineering Material Structure

The correlation between the properties of e-polymers and the structure of engineered materials is intricate and

encompasses a variety of factors. The properties of e-polymers are closely tied to the material’s chemical composition,

chain organization, morphology, film-processing techniques, interfaces with electrodes, and molecular weight .

Understanding and controlling these factors allows for the design of e-polymers with tailored electronic properties.

Property–Structure Relationships: The structure of a material directly influences its properties, such as mechanical,

electrical, thermal, and chemical characteristics. By studying this structure, researchers can gain a deeper understanding

of the basic mechanisms that control these characteristics. Therefore, studying the structure of engineering materials is

crucial for understanding the performance structure relationship, optimizing material processing, improving performance

and reliability, guiding material selection and design, investigating faults, and promoting material innovation.

Although wearable and implantable bioelectronics have achieved remarkable success and a huge market, their

development so far has almost entirely depended on silicon microelectronics, and they have some inherent limitations in

providing functions with long-term stability and sustainability . The repeated stimulation and damage of these rigid

devices to biological tissues often lead to significant inflammatory reactions at the implant site, ultimately leading to

human rejection of the device. In addition, the limited lifespan of the implanted power supply in the human body further

limits it. Essentially, the difficulties of the interface between these electrons and biological systems stem from the

complexity and subtlety of biological systems composed of soft, dynamic, 3D , and fragile tissues. In addition,

animals/humans have innate immunity and are immune to external “invaders.” Therefore, we believe that the research of

3D engineering material structure plays a crucial role in achieving the ideal wearable and implantable bioelectronics of

stable and sustainable operation in the human body . Although the ability to bend can be effectively integrated into

small areas or simple curved areas of the body, the complex texture and natural and complex movements of the skin

cannot be adapted solely through bending . Therefore, the study of stretchability, 3D structures, and other types of

structures is crucial. The composition and structural design of the device play a crucial role in the seamless integration of

wearable or implantable devices into the human body . Mechanical properties play a vital role in determining the quality

and durability of a product. By understanding and optimizing these properties, it is ensured that products achieve the

highest standards of excellence and provide the highest possible performance . Typically, micron/nanofabrication

manufacturing processes allow for the large-scale collection of thin films, silicon wafers, and conductive

nanofilms/strips/wires . Through this machining process, the corresponding mechanical force exerted on the planar

structure of the material transforms the structural shape of the planar material into a 3D structure as a result of the

nonlinear buckling process.

The human body is a complex 3D structure composed of numerous interconnected systems that maintain homeostasis

and perform various functions. Understanding the 3D structure of the human body is crucial for participating in the

development of new treatment methods, medical equipment, and technologies to improve health. One way to visualize the
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3D structure of the human body is through medical imaging techniques such as computed tomographies (CTs), magnetic

resonance imaging (MRI), and ultrasounds. These techniques generate detailed images of internal structures such as

bones, organs, and tissues, allowing medical professionals to diagnose conditions, plan surgeries, and monitor

treatments. Another way to study the 3D structure of the human body is through anatomical models and simulations.

Anatomical models can be physical objects or computer-generated graphics that accurately represent the size, shape,

and location of internal structures. In consideration of realizing highly stretchable electronic circuits, serpentine structures

with stretchable and bendable configurations, such as fractal designs, are used. Rigid conductive films with a planar

layout are often bonded or embedded with an elastic substrate to accommodate large strains. The strategy of such a

design of the serpentine pattern enables real-time independent control of the optical stimulus via near-field

communication. A micromode is a microscale structure incorporating sensor-sensitive components to control and enhance

response characteristics. The mesh and fiber structure creates softness, flexibility, breathability, and durability

characteristics. Functional materials in mesh and fiber structures can be designed as textiles for wearable physiological

monitoring. The ultra-thin, porous, and open mesh layout also allows sensors to attach to the skin comfortably or

imperceptibly .

4. E-Polymers for Bio-Integrated Applications

To ensure human health and safety, emerging wearable devices are biocompatible and ensure a non-irritating interface to

allow direct contact with the human body . Interface connections to other parts of the body ensure that the interface

material is highly breathable, non-toxic, lightweight, and has an elastic and low modulus mechanical response. The

human epidermis is a noteworthy interface point for physiological monitoring, and skin bioelectronics is considered an

ideal platform for personalized healthcare. Skin bioelectronic devices for long-term, continuous health monitoring provide

a robust analysis of various health states, offering access to early disease diagnosis and treatment . Traditional rigid

silicon microelectronic-based implantable devices have low biocompatibility and high invasiveness . In addition, the

need for a more sustainable power supply and wireless data transmission options further limits the sustainable

development of devices. In the past decade, significant research progress has been made in creating new material

concepts and equipment engineering strategies to achieve multifaceted physical and chemical biocompatibility,

sustainable power supply, and wireless data transmission under implantation . Recent chemical and biological

strategies have enabled traditional rigid polymer semiconductors to be stretched without affecting their electrical

properties. Stretchable pressure sensors are essential for sensing the physical interactions that occur on flexible or

deformable skin present in a human body, prosthetic limb, or soft robot. Such sensors have tissue-matched physical and

chemical properties as well as wireless communication capabilities with external systems .

Flexible wearable and implantable sensors are innovative devices that have gained significant attention in the fields of

healthcare and fitness, as well as various other industries. These sensors are designed to be worn or implanted on or

within the human body to monitor various physiological parameters, environmental factors, and more . They offer

several advantages, such as continuous and non-invasive data collection, real-time monitoring, and enhanced comfort for

users . This section discusses biosensors, pressure sensors, and recently developed devices for the continuous and

real-time monitoring of crucial physiological health parameters. The combination of electronics and biological systems has

produced many powerful technologies for developing biomedical science . The most advanced electrophysiological

skin-integrated sensor combines the ultra-thin conformal electrode interface with wireless communication capabilities and

low-power electronic devices, suitable for long-term monitoring. Irritation-free direct contact with the skin is ensured by

optimally selecting the shape mechanism and material composition components of the skin-like flexible electrodes .

The integration of energy harvesters with sensors is particularly useful in applications that require long-term or remote

monitoring. In remote environmental monitoring stations, these systems can continuously power sensors without the need

for frequent battery changes. Additionally, in wearable devices and IoT applications, energy harvesters can extend life and

reduce maintenance. Energy harvesters and sensors are two key components in the development of self-sustaining and

autonomous systems. Energy harvesters are devices that capture and convert energy from various sources in the

environment, while sensors are devices that monitor and measure physical or environmental parameters. These

technologies combine to create self-powered sensing systems with a wide range of applications. Self-powered smart

sensors are devices that both sense and process data and are self-sufficient in power. These sensors can harvest energy

from the environment to sustain their operation, eliminating the need for constant external power sources such as

batteries or wired connections.
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4.1. Pressure Sensor

Biological interface pressure sensors have different working mechanisms and representative materials used for these

sensors . For each mechanism, selecting the appropriate material requires balancing sensitivity, stability, flexibility,

manufacturability, and many other factors . According to different working mechanisms, there are resistive, capacitive,

piezoelectric, and triboelectric pressure sensors . E-polymers have gained considerable attention in recent years due to

their wide range of applications in the field of pressure sensing.

Scalable pressure sensors are necessary for sensing physical interactions occurring on soft/deformable skin in human

bodies , prosthetics, or soft robots. However, existing types of scalable pressure sensors have inherent limitations,

namely the interference of stretching on pressure-sensing accuracy. E-polymers offer several advantages for pressure

sensing applications. They are lightweight, flexible, and can conform to irregular shapes, making them suitable for a range

of form factors. Additionally, they can be processed using low-cost fabrication techniques, such as solution-based

deposition or printing methods, enabling the large-scale production of sensors. E-polymers, including PEDOT, PPy, and

PANI, are promising materials for pressure-sensor applications. Their unique combination of electrical and mechanical

properties makes them suitable for developing flexible, lightweight, and sensitive sensors for various applications,

including wearable devices, robotics, and biomedical sensing.

4.2. Biosensor

E-polymers are attracting attention in the field of biosensors due to their unique properties that can be used in sensing

applications. A biosensor is an analytical device that combines a biosensing element with a sensor to detect and analyze

the presence of a specific biological target . E-polymers can be used as transducer elements in biosensor platforms to

convert the interaction between the biosensing element and the target analyte into a measurable electrical signal.

Conducting polymers such as polyaniline (PANI), PPy, polythiophene (PTH), and poly(3,4-ethylenedioxythiophene)

(PEDOT), which are highly conductive, have been extensively studied for biosensor applications . In addition,

molecularly imprinted polymers (MIPs) selectively recognize and bind to specific target molecules, and MIPs can be used

as recognition elements in biosensors for the detection of a wide range of analytes, including small molecules, proteins,

and even whole cells . Polymer hydrogels are highly biocompatible and capable of encapsulating and immobilizing

biomolecules. Through the addition of specific receptors or enzymes to the hydrogel matrix, the swelling or shrinking of

the hydrogel can be converted into an electrical signal, indicating the presence of an analyte . This section focuses on

the use of OFETs, which utilize an organic semiconductor polymer as the active ingredient in the transistor structure and

can provide quantitative information about the target analyte by measuring changes in the electrical properties of the

organic semiconductor.

The choice of polymer depends on the specific application requirements, including target analytes, sensitivity, selectivity,

and compatibility with biological systems. OECTs with uniquely high amplification and biosignal sensitivity are novel

device platforms for next-generation bioelectronics. OECTs are particularly interesting due to their biocompatibility and

ability to efficiently interface with biological systems, making them useful in applications such as bioelectronics and

medical devices. OECTs are made using organic materials, such as organic semiconductors and organic electrolytes.

These organic materials offer several advantages, including flexibility, biocompatibility, and ease of manufacturing .

OECTs have unique properties that make them well-suited for applications where biocompatibility, flexibility, and precise

control of electrical conductivity are essential. They continue to be an active area of research and development in the field

of organic electronics and bioelectronics . 

4.3. Energy Harvester

Traditional battery power supply has disadvantages such as limited energy supply life, complex packaging process, easy

leakage, severe toxicity and pollution, fixed size, and high cost . Therefore, using energy collectors instead of batteries

achieves a self-powered system. Mechanical vibration energy is a common form of energy in the environment, which

exhibits a more sustained, stable, and high-density energy than solar and thermal energy . Future electronic products

will have flexibility and deformability while maintaining the flexibility and deformability of their power supply, which is also

very important . The stretchable deformation triboelectric/piezoelectric nanogenerator can collect biomechanical energy

as the power supply of wearable electronic products. Triboelectric generators operate mainly in contact mode and sliding

mode, and their efficiency depends strongly on the differences in the constituent materials’ electron attraction capacity and

the contact surfaces’ morphology . Triboelectric devices can utilize a wider range of materials (PTFE, PET, PI, PDMS,

PMMA, CNT, ITO, Al, Cu, Si, etc.). Higher output power densities and energy-conversion efficiencies can be realized

depending on the choice of material and the design of the structure, for example. A piezoelectric nanogenerator is a

device that uses materials with a piezoelectric effect to convert mechanical energy into electrical energy to supply power
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for nanodevices when subjected to external tension or compression .  E-polymers have gained significant attention in

the field of energy harvesting due to their unique properties and potential applications.   E-polymers have been widely

used in energy harvesting science. E-polymers are also becoming increasingly important in the field of energy harvesting.

The field of e-polymers for energy harvesting is still growing rapidly. With discoveries and advancements, e-polymers will

likely play an important role in the development of future energy-harvesting technologies.

4.4. Strategies for Self-Powered Intelligent Sensing Systems

Combining sustainable electricity and reliable signal sensing has brought challenges and opportunities to electronic

systems in the Internet of Things era. In the new generation of the Internet of Things, collecting and analyzing big data

based on widely distributed perception networks is particularly important in developing intelligent systems. Conventional

sensors usually require an external power supply but have a limited lifetime and high maintenance costs.   As a newly

developed mechanical energy harvesting and mechanical force-sensing technology, TENGs have great potential to

overcome these limitations. Most importantly, TENGs can be manufactured from wood, paper, fibers, and polymers, the

most commonly used materials . These compatible features enable tribal skins to integrate into soft robots, actively

sensing external stimuli and internal movements through self-generated electrical signals. Self-powered devices can be

used not only for sensing, detection and monitoring, but also for driving functional components that interact with humans

in a real-time. In addition, soft robots with large-area multi-channel sensing arrays have been proven. This work opens a

crucial door to the enormous potential of soft robots and artificial electronic sensory skins.
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