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Lipopolysaccharide, the main component of the outer membrane of Gram-negative bacteria is a highly potent

endotoxin responsible for organ dysfunction in sepsis. It is present in the blood stream not only in Gram-negative

infections, but also in Gram-positive and fungal infections, presumably due to sepsis-related disruption of the

intestinal barrier. Various pathways, both extra- and intracellular, are involved in sensing endotoxin and non-

canonical activation of caspase-mediated pyroptosis is considered to have a major role in sepsis pathophysiology.

Endotoxin induces specific pathological alterations in several organs, which contributes to poor outcomes. The

adverse consequences of endotoxin in the circulation support the use of anti-endotoxin therapies, yet more than 30

years of experience with endotoxin adsorption therapies have not provided clear evidence in favor of this treatment

modality. The results of small studies support timely endotoxin removal guided by measuring the levels of

endotoxin; unfortunately, this has not been proven in large, randomized studies. The presence of endotoxemia can

be demonstrated in the majority of patients with COVID-19, yet only case reports and case series describing the

effects of endotoxin removal in these patients have been published to date. The place of blood purification

therapies in the treatment of septic shock has not yet been determined.

endotoxin  septic shock  blood purification  bacterial translocation

1. Introduction

Sepsis is recognized as a global health problem with an estimated nearly 50 million cases and 11 million deaths

recorded worldwide in 2017, representing almost 20% of all global deaths . Recent meta-analysis of

epidemiological evidence, related to the burden of hospital-acquired sepsis, showed mortality between 30.1% and

64.6% among ICU-treated patients . Septic shock is characterized by persistent hypotension requiring

vasopressor support and a serum lactate level > 2 mmol/L, despite adequate fluid resuscitation. In the continuum

of sepsis severity it carries the worst prognosis, with mortality reaching up to 92% in some studies .

In addition to standard therapy, which includes infection control (antibiotics, controlling the source), cardiovascular

resuscitation (administering fluids, vasoactive agents), and organ support, modulation of the host response is

assumed to improve outcome, with low-dose corticosteroids being most commonly advocated . An alternative

approach includes extracorporeal therapies aimed at removing molecules that are involved in the immune reaction

to invading microorganisms. Endotoxin plays a prominent role in the pathogenesis of sepsis, and the idea to

neutralize its detrimental capacities continues to attract the attention of researchers and clinicians.
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2. Lipopolysaccharide Sensing Pathways

Lipopolysaccharide is sensed via extracellular and intracellular pathways that lead to the activation of the immune

response.

2.1. Toll-like Receptor 4–Myeloid Differentiation Protein 2 (TLR4-MD-2) Pathway

The toll-like receptor 4 (TLR4) is the main sensing receptor for LPS, and it is one of the pattern recognition

receptors responsible for the early detection of invading microbes by the innate immune system. TLR4 is

expressed on the surface of macrophages, monocytes, neutrophils, dendritic, and epithelial cells, as well as within

endosomes, forming the front line of the host’s defense against Gram-negative bacteria. LPS molecules in the

bacterial cell wall and also soluble LPS-aggregates are dissociated and bound by LPS Binding Protein (LBP),

carried to form a complex with either a soluble or membrane bound cluster of differentiation-14 (CD14), and

subsequently transferred to the toll-like receptor 4/myeloid differentiation-2 (MD-2) complex, which promotes the

TLR4/MD-2 dimerization necessary for activating intracellular MyD88-dependent and TRIF-dependent pathways.

Both pathways lead to the production and release of pro-inflammatory cytokines and type I interferones (IFNs),

respectively . Immune hyperactivation from the inappropriate triggering by pathogens and the cytokine storm

leads to organ damage, multi-organ failure, and death .

The progress in research on LPS recognition systems, witnessed in the last decade, led to important discoveries of

TLR4-independent LPS-sensing pathways that may have a central role in the pathophysiology of sepsis and

related mortality.

2.2. Transient Receptor Potential (TRP) Ion Channels

Transient receptor potential ion channels are membrane-bound channels that serve as cellular sensors of

environmental and intracellular stimuli. LPS sensing by TRP channels has been demonstrated in neurons and

airway epithelial cells . The activation of TRPA1 channels in nociceptive neurons by the LPS of pathogenic

bacteria generates pain during inflammation . Activation of the TRPV4 channels in the airway epithelium boosts

ciliary beat frequency and the production of bactericidal nitric oxide, which facilitates the pathogen clearance from

the airways. LPS sensing by TRP channels provides an immediate response to invading pathogens, which is faster

and independent of the canonical TLR4 immune pathway .

2.3. Intracellular LPS Sensing

The activation of caspases plays a crucial role in intracellular pathogen detection and defense. LPS can enter the

cytosol as LPS/outer-membrane-vesicle (OMV)-high mobility-group-box-1 (HMGB1) complexes internalized

through a receptor for advanced glycation (RAGE). LPS that enters the cytoplasm of macrophages, as well as

endothelial and epithelial cells, is sensed by inflammatory caspases—caspase-11 in mice and caspase-4/5 in

humans—and leads to the induction of pyroptosis, an inflammatory form of cell death. Activated caspases cleave

gasdermin D, which causes pore formation in the cell membrane with subsequent cell lysis and the release of
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proinflammatory IL-1β and IL-18 . Inflammasome activation and pyroptosis are important mechanisms of the

innate immune defense against pathogens that are capable of invading the cytosol and play a major role in sepsis

pathophysiology. Caspase-11 has been found to be responsible for bacterial clearance in Klebsiella pneumoniae

and Acinetobacter baumannii, as well as Burkholderia lung infections . It is speculated that caspases may be

responsible for sensing penta-acylated LPS, which is not detected by TLR4 . Caspase-mediated pyroptosis of

endothelial cells has a fundamental role in the host’s defense and immune surveillance functions of the

microvasculature . Excessive activation of pyroptosis causes extensive cell death and immense inflammation

leading to organ failure and septic shock .

3. Organ Damage Caused by Sensing Endotoxin

Endotoxin plays a very prominent role in the pathogenesis of sepsis. It is one of the most important pathogen-

associated molecular patterns (PAMP), and a large burden of endotoxin triggers an excessive, uncontrolled

systemic inflammatory response that leads to multi-organ failure and death. Moreover, endotoxin induces specific

pathological alterations in several organs that contribute to the outcome (Figure 1).

Figure 1. Selected organ

damage induced by sensing endotoxin. AKI—acute kidney injury; ALI—acute lung injury; TLR4—toll-like receptor 4;

HMGB1—high mobility group box-1; LPS—lipopolysaccharide; LVEF—left ventricular ejection fraction; LVEDV—

left ventricular end diastolic volume.

3.1. The Kidney

Acute kidney injury (AKI) develops in at least 40–50% of patients with sepsis or septic shock and is associated with

significantly higher mortality . In addition to septic alterations, AKI presents with metabolic and fluid

abnormalities, necessitating adjustments in volume therapy and pharmacotherapy, most notably limiting

antimicrobial choice. The pathophysiology of septic AKI is complex and, in addition to hypoperfusion, interactions

between vascular, tubular, and inflammatory factors are involved. Although the exact mechanism underlying renal

dysfunction in sepsis remains unknown, there is strong experimental evidence supporting the prominent role of the

toll-like receptor 4 (TLR-4), which is expressed in the kidney . Its activation causes cytokine and chemokine

release; leukocyte infiltration, which results in endothelial dysfunction; tubular dysfunction and altered renal

metabolism and circulation . TLR-4 receptors are located in the tubular epithelium and in the glomeruli and
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vascular endothelium. Endotoxin is filtered in renal glomeruli, internalized by S1 proximal tubules through TLR4

receptors, and interactions between endotoxin and S1 tubules result in severe oxidative stress and damage to the

neighboring S2 segments . TLR4 directly inhibits bicarbonate absorption in the medullary-thick ascending

limb, downregulates renal sodium, chloride, and glucose transporters, causes luminal obstruction, and reduces

tubular flow, among other effects . Endothelial activation and alterations to glomerular glycocalyx and the

deposit of NETs in kidney tissue secondary to endotoxic shock also contribute to kidney injury . Direct renal

damage by endotoxin can explain the occurrence of AKI in sepsis, even when hemodynamic parameters are well-

controlled . In fact, protocolized hemodynamic resuscitation did not influence either the development or the

course of AKI in patients with septic shock . As a result, the concept of equating sepsis-induced AKI to acute

tubular necrosis, attributed to ischemia from hemodynamic changes, has been replaced by the theory of the

interplay between inflammation and oxidative stress, microvascular dysfunction, and the adaptive response of the

tubular epithelial cells to the septic insult .

3.2. The Lung

In mice subjected to LPS-induced sepsis, pronounced histological alterations in the lungs were found, with

thickening of the septum, edema, congestion, and high leukocyte infiltration into the interstitium, which correlated

with a significant increase in the serum concentrations of NETs and the extent of lung injury . In another

experimental study, lung injury was attributed to LPS-triggered pyroptosis of the endothelial cells in the lungs; LPS

sensing in the endothelial cytoplasm via caspase-4/5/11-mediated pyroptosis led to disruption of the endothelial

barrier resulting in pulmonary edema, the release of pro-inflammatory cytokines, fluid protein leakage, and a

massive influx of leukocytes . The pyroptotic response was augmented when the expression of caspase-4/5/11

was enhanced by concomitant priming with extracellular LPS via LPS binding to TLR4 .

3.3. The Heart

Toll-like receptors 4 are expressed in cardiomyocytes and their activation elicits an inflammatory response with the

production of cytokines and chemokines with a negative effect on cardiac contractility . In healthy volunteers,

endotoxemia resulted in a reduction in the left ventricular ejection fraction and an increase in the left ventricular end

diastolic volume . In mice, LPS administration resulted in significant pathological changes in the myocardial

bundles, congestion of the capillaries with the presence of leukocytes attached to the endothelium, and

pathological changes in the cardiomyocytes seen upon histological examination . The results of other studies

indicated that sepsis-associated cardiac dysfunction was also mediated by mechanisms other than TLR4 .

3.4. The Liver

The liver is an important participant in the body’s reaction to endotoxemia. Murine studies demonstrated that

endotoxin uses both TLR4 and caspase-11/gasdermin D (GsdmD) pathways to induce the release of HMGB1 from

hepatocytes—the major source of circulating HMGB1 in sepsis . Complexes of hepatocyte-released HMGB1

and LPS are delivered via RAGE into the cytosol of macrophages and endothelial cells, where LPS activates
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caspase-11 and induces pyroptosis and cell death . The intracellular LPS-sensing pathway is considered to

have a central role in the pathogenesis of sepsis .

In the liver, LPS affects the architecture of the sinusoidal endothelium and blood flow velocities, which leads to

extravasation of neutrophils and neutrophil–hepatocyte interactions, decreases protein S and thrombomodulin

synthesis, which contributes to a pro-coagulant state and has a direct cytotoxic effect on hepatocytes . In

mice subjected to LPS-induced endotoxemia, histological changes in the liver included enlarged sinusoids, an

increased volume of endothelial cells with rounded nuclei, a high number of leukocytes in the lumen, Kupffer cell

hypertrophy and hyperplasia, along with the presence of leukocytes close to periportal areas and congestion of the

central vein with swollen hepatocytes .

3.5. The Vascular Endothelium

Endothelial cell dysfunction is thought to be the key factor in the progression from sepsis to organ failure . The

presence of endotoxin in the blood causes shedding of the glycocalyx lining of the vascular endothelium that leads

to the loss-of-barrier function, the formation of edema, and the dysregulation of vascular tone, among other effects

. LPS triggered, caspase-dependent pyroptosis in endothelial cells results in disruption of the endothelial barrier,

fluid leakage, and the development of ALI .

4. Investigating Aspects of Endotoxin Removal

4.1. Timing of the Initiation of Endotoxin Adsorption

Non-randomized studies that compared an early vs. late initiation of the PMX HP treatment in patients with septic

shock found better survival or reduced catecholamine requirements in the early treatment group. The initiation of

PMX hemoperfusion within 6, 8, or 9 h after the administration of catecholamine or the diagnosis of septic shock

resulted in a more favorable outcome compared to a later initiation . According to the results of these

studies, PMX HP therapy should be performed as early as possible in patients with septic shock, and a delay in

PMX HP therapy may contribute to increased mortality .

4.2. Extended Endotoxin Adsorption Treatment

The recommended period for PMX HP treatment is 2 h. In studies where the time of treatment ranged from 8 to 24

h, there were improved hemodynamics and improved pulmonary oxygenation, but no improved mortality was

observed .

4.3. Endotoxin Removal Treatment Guided by Measuring the Endotoxin Level

In 11 patients diagnosed with postsurgical sepsis and who had a high EAA (≥0.6), when the PMX HP treatment

was performed and repeated every 24 h until the EAA was low (<0.4), all patients survived until the 28-day follow-

up . These findings are similar to an observation from the post-hoc analysis of the EUPHRATES trial. A trend
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toward lower mortality and a significant increase in ventilation-free days was found in patients with septic shock

and a greater than median reduction in EAA on day 3 after the PMX HP treatment. The same was true for patients

who achieved an EAA of less than 0.65 on day 3 . The authors of the study suggested that the dosing regimen

of PMX therapy should be tailored according to measured endotoxin levels and/or patient’s clinical response, but

this hypothesis needs to be validated in a prospective study .
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