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P16 is a tumor suppressor gene, which has been termed with several names such as the multiple tumor

suppressor-1 (MTS-1), the inhibitor of cyclin-dependent kinase 4a (INK4A), or the cyclin-dependent kinase inhibitor

2a (CDKN2A). The human p16 gene is located on the short arm of chromosome (9p21.3). The p16 transcript is

composed of three exons which encode 156 amino acids. The use of an alternative reading frame generates the

human p14Arf protein (p19Arf in mice). In several selected tissues and organs, including skin, bones, lungs, brain,

heart, kidney, and liver, it is intended to address the well-known function of p16 in senescence and aging, and

discuss several functions of p16, which might be more related to its classical role as a cell cycle regulator.

aging  cancer  development  p16

1. The P16 Gene

The CDKN2A gene belongs to the INK4 genes family. CDKN2A encodes for p16Ink4A and p14ARF (p19Arf in

mice), while CDKN2B encodes for p15Ink4B, CDKN2C for p18Ink4D, and CDKN2D for p19Ink4D. They share

biological properties in cell cycle regulation and tumor suppression . The p16  structure consists of five

exons E1β, E1α, E2, E2γ, and E3. Alternative splicing generates four different transcript variants including p16

(E1α, E2, and E3), p19Arf (E1β, E2, and E3), (the murine orthologue of the human p14ARF), in addition to p16γ

and p12. Thus, the difference between p16 and p19ARF transcript variants lies within the alternative splicing of

E1α versus E1β  (Figure 1).
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Figure 1. The structure of the INK4A locus gives rise to several transcripts through alternative splicing. P16INK4A

and p19ARF are two transcripts of 3 exons which differ only in the first exon that is E1α for p16 and E1β for

p19ARF.

2. In the Skin

The skin is the largest tissue in the human body. It serves as a physical barrier to both biological and nonbiological

threats. Being exposed to the outside environment places the skin in direct contact with environmental hazards,

making it extremely vulnerable. The skin is made up of two layers: the outer epidermis, which is divided into four

sublayers with keratinocytes predominating in the spinous, granular, and cornfield sublayers, and pigment-

producing melanocytes that confer photoprotection in the basal sublayer. The underlying dermis contains

connective tissue with fibroblasts, collagen, and elastin as well as sebaceous and sweat glands and is connected

to the epidermis by the dermal epidermal joint (DEJ) . Skin aging is caused by both intrinsic (genetic, time, etc.)

and extrinsic (pollution, UV exposure, sunlight, etc.) factors, and it has both biological and functional implications.

Aged skin has thinner epidermis, dermis, and DEJ than younger skin, which is due to keratinocytes’ decreased

proliferation and renewal ability .

As major biomarkers of senescence, both the SA-β-gal and p16 determination has shown elevated expression

upon in vitro exposure of fibroblasts and keratinocytes to UV light . Furthermore, telomere shortening,

DNA damage, and UV exposure increased the activity of the p16/pRB and P19ARF/p53/P21 cascades, resulting in

an accumulation of senescent cells and skin stem cell dysfunction and loss of regeneration capacity . An in vivo

study, on the other hand, claimed that UV light exposure has accelerated cellular senescence by increasing p21

expression .

[5]
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In contrast to the previous results, the presence of p16 has been shown to play an important role in several

biological processes that are beneficial to the skin. Starting with its tumor suppression function, p16 inactivation

due to mutation or promoter methylation has been linked to a variety of cancers, including familial and sporadic

melanoma . These studies identified 55 out of 60 melanoma cell lines that were dependent on complete

or partial p16 aberration, implicating this pathway in the development of melanomas. Furthermore, the level of p16

expression could be used as a melanoma predictive and prognostic biomarker. In other words, lower p16 levels

were associated with higher Ki67 expression as a proliferation marker, and metastatic melanoma lesions were

associated with even lower p16 levels and predicted poor patient survival . Benign nevi had higher p16 levels

than nonmetastatic melanoma, which had even higher p16 levels than metastatic melanoma . Furthermore, in

primary mouse fibroblasts (PMFs), human melanocytes, and a human melanoma cell line (A375), the loss of p16

correlated with increased mitochondrial mass, attenuated respiration, and altered morphology associated with

augmented superoxide production and higher cellular motility. Forced p16 expression restored mitochondrial

homeostasis, dynamics, and motility in a CDK4/pRB independent pathway . Surprisingly, oxidative stress-

induced p16 has attenuated ROS production in skin in vivo and in vitro. In addition, elevated intracellular ROS and

DNA damage were obtained in p16-deficient cells. This was restored in skin fibroblasts transduced with p16 using

lentivirus . These findings suggest a pRB-independent tumor suppression function of p16. As another

mechanism, p16 has been found to transactivate the promoter of the tumor suppressor miRNAs, miRNA-141 and

miRNA-146b-5p, in melanocyte through physical interaction with the transcription factor Sp1 and CDK4, via the

p16 fourth ankyrin repeat. Mutation in this ankyrin repeat attenuated Sp1 binding and miRNA-141 and miRNA-

146b-5p transactivation without affecting the expression level of Sp1 . In addition, this p16–Sp1–CDK4

interaction and consequent miRNA-141 and miRNA-146b-5p transactivation has also been implicated in cellular

response to UV-radiation-induced damage and apoptosis.

P16 has been shown to be an important factor in wound healing. Endothelial cells and fibroblasts were identified as

p16-positive cells at the site of injury in the p16-3MR mouse model a few days after injury. These transiently

appearing senescent cells aimed to accelerate wound closure by inducing myofibroblast differentiation via platelet-

derived growth factor AA secretion as part of the SASP . Elimination of these cells delayed the wound healing

process. The matricellular protein CCN1 has been identified as a key player in the induction of fibroblast

senescence at the wound healing margins. By inducing DNA damage and p53 activity, CCN1 induces oxidative

stress and provokes p16 upregulation, which leads to fibroblast senescence and antifibrotic gene activation .

Furthermore, coexpression and activation of the laminin 5/p16 response has been identified in migrating

keratinocytes. The laminin 5/p16 response caused hypermotility and growth arrest in keratinocytes, leading to

wound re-epithelialization . This pathway has also been identified in critical stage neoplastic progression as a

tumor suppressing pathway. This might suggest a protective effect of the induced p16 upregulation upon the

exposure of skin to UV radiation .

Moreover, p16-orchestrated expression is required for stem cell self-renewal and differentiation. More precisely,

p16 repression by epigenetic regulators is indispensable for stem cells proliferation. On the contrary, its promoter

epigenetic regulation and orchestrated expression level have been found crucial for keratinocyte differentiation

beside many other differentiation genes . However, p16 seems not causal for terminal differentiation

[13][14][15][16]
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as it is expressed during early embryonic development , but still the balance between growth and differentiation

requires a balanced expression of p16 and other cell cycle regulators . For instance, Id-1, Id-2, and Id-3

are repressors of p16 and are upregulated in dividing keratinocytes, whereas they become downregulated in

differentiated cells . Activators of p16 transcription promoted keratinocyte differentiation via acting on epidermal

differentiation complex genes . Therefore, unravelling the precise mechanism underlying p16 regulation of

expression might provide a targeted approach which confers maintenance of epidermis regenerative capacity and

avoids premature skin aging or cancer development (Figure 2).

Figure 2. Schematic illustration that summarizes the major functions or implications of p16 in homeostasis,

pathophysiology, and cancer of different organs.

[31]
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3. In the Bones

Two major types of cells are involved in maintaining skeletal homeostasis: osteoblasts, which are derived from

osteoprogenitor cells and are in charge of bone growth, mineralization, and remodeling, and osteoclasts, which are

descended from myeloid lineages and mediate bone resorption and breakdown . Osteocytes are the most

prevalent long-lived cell type in bone matrix and are in charge of maintenance of bone mass . Skeletal aging is

characterized by bone mass loss and is a significant risk factor for osteoporosis because it results from an increase

in osteoclasts and a decrease in osteoblasts count . Cellular senescence has been linked to bone aging

and the development of aging-related osteo-pathologies . More precisely, senescent osteocytes have been

detected in aging bones with increased expression of p16.

In contrast to osteocytes, senescent osteoblasts are characterized by increased expression of p21 only 

. Moreover, the selective elimination of p16-expressing cells using INK-ATTACK transgene resulted in increased

bone mass in 20 months old mice . Furthermore, using the p16-3MR transgene, which is based on the

elimination of P16-expressing cells upon treatment with ganciclovir (GCV), has effectively abrogated age-related

increases in osteoclastogenesis of the myeloid lineage but had no effect on bone formation. This might indicate

that p16, rather than direct targeting of senescent osteocytes, contributes to osteoclastogenic potential without

major impact on age-related bone loss .

However, other implications of p16 have been demonstrated in bone. P16 degradation by the ubiquitinated

regulator UBE2S is an important step in the progression of prostate cancer bone metastasis . Furthermore,

patients with p16-positive oropharyngeal squamous cell carcinoma had a higher incidence of bone metastasis than

p16-negative patients . Lower expression of p16 in osteosarcoma patients was correlated with reduced

response to primary chemotherapy , which, therefore, shows the importance of p16 as a prognostic and

predictive biomarker and therapeutic target for cancer and metastasis.

Aside from p16 in cancer, although only p21-positive cells were able to prevent radiation-induced osteoporosis ,

p16 deletion inhibited oxidative stress, osteocyte senescence, and osteoclastic bone resorption, which led to

osteogenesis and osteoblastic bone formation, indicating a promising mechanism to prevent estrogen deficiency-

induced osteoporosis . Furthermore, p16 deletion promoted migration, proliferation, and differentiation of bone

marrow mesenchymal stem cells (BM-MSCs) and chondrocytes. It also stimulated osteoblastogenesis and

vascularization, which improved bone fracture healing. Consequently, p16 modification might offer a novel strategy

for treating fractured bones in elderly patients  (Figure 2).

4. In the Lungs

Cellular senescence and aging have both been linked to increased lung damage and functional impairment .

Growing evidence suggested aging as another determinant of the chronic obstructive pulmonary disease (COPD)

and showed higher prevalence of the disease in elderly . Similarly, even though there are no certain
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causes of idiopathic pulmonary fibrosis (IPF), aging associated with cellular senescence and p16 overexpression

has emerged as a main risk factor .

Cigarette smoking (CS) is a major risk factor attributed to COPD . CS can alter cellular proliferation and induce

apoptosis, reactive oxygen species production, and promote oxidative stress, cause DNA damage, and trigger

cellular senescence . Furthermore, mice exposed to chronic cigarette smoking at both young and old ages

showed increased activation of the senescence marker beta-galactosidase as well as upregulation of p16

compared to their respective air-exposed controls. Older air-exposed mice had higher levels of beta-galactosidase

and p16 than younger mice. Therefore, CS-induced senescence and natural-aging-associated senescence are

both affected by the p16 pathway . This was confirmed in human COPD patients who had higher p16 expression

compared to normal smokers and nonsmokers . Furthermore, after CS exposure, wild type mice had more

senescent alveolar type II (AECII) epithelial cells than p16 knockout mice, which had normal pulmonary function.

Moreover, p16 deletion has rescued the adverse effects induced by CS in the lungs via the insulin growth factor1

(IGF1)/Akt1 signaling pathway .

However, p16 expression is a differentiation key between cervical squamous cell carcinoma (SCC) with pulmonary

metastasis and pulmonary SCC. Immunohistochemistry of both cervical SCC without and with pulmonary

metastasis has shown an intense staining of p16 in almost all cases studied. On the contrary, cases with

pulmonary SCC demonstrated p16 expression in 7 out of 33 cases, 3 of which showed weak p16 staining. This

implies the usefulness of p16 as a distinguishing marker between cervical SCC with lung metastasis and

pulmonary SCC . Furthermore, the fact that aberrant p16 methylation occurs at early stages of lung cancer

renders p16 an early diagnostic biomarker for monitoring and prevention . Moreover, p16 low expression and

gene mutation were associated with early and late stage nonsmall cells lung carcinoma (NSCLC), respectively 

. As a result, it has been identified as a predictable prognostic factor in NSCLC, particularly at the early stage.

On the other hand, p16 expression is not only linked with disease progression but also with lung protection. P16

loss was linked with poor survival after lung injury. In addition, p16 expression was found to be crucial for protection

of lung epithelium against oncogenic stress and lung injury . Moreover, injured p16-positive mesenchymal cells

enhanced epithelial progenitor proliferation, whereas deletion of p16 attenuated normal epithelial repair in the lungs

. Furthermore, prevalent usefulness was demonstrated for p16 as a target for COPD therapy. Higher p16

expression was found in human COPD lungs compared to normal patients, and when CS induced impaired

pulmonary function and augmented emphysema in WT mice, p16 knockout mice exhibited normal pulmonary

function with reduced emphysema and increased alveolar progenitor proliferation  (Figure 2).

5. In the Brain

Aging-induced p16 overexpression and cellular senescence have been linked to decreased subventricular zone

progenitor proliferation and neurogenesis of the olfactory bulb and to diminished multipotent progenitor cell

frequency and self-renewal potency . Moreover, chronic accumulation of senescent cells and the resulting

inflammation in the brain has been linked to the development of Alzheimer’s disease (AD) and other
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neurodegenerative diseases . In two out of five AD models, Dorigatti et al.  found evidence of cellular

senescence marked by a significant increase in p16, p21, and p53 expression, as well as increased SASPs

expression and beta-galactosidase activity . Another study found that tau-containing neurofibrillary tangles

(NFTs), a hallmark of Alzheimer’s disease, are age-dependent and strongly associated with senescence induction

and upregulation of p16 and p21 . Nonetheless, astrocytes play an important role in neuronal homeostasis

and functions, and, as we age, they undergo senescence in response to multiple stresses, resulting in impaired

brain function .

As previously discussed for other tumors, unsurprisingly, p16 homozygous deletion was found in both primary

glioblastoma and their derived xenografts . In addition, p16-cdk4/cyclin D1-pRb pathway inactivation was found

in the majority of glioblastomas . P16 loss was linked to significantly poor outcome in all glioma patients, which

indicates a predictive prognostic usefulness of p16 in brain tumors . On the contrary, p16 null glioma cells

demonstrated higher chemosensitivity to paclitaxel and topotecan compared to exogenous wild type p16

overexpression .

P16 overexpression has been shown to exert a protective function of neurons against CDK overexpression-

induced apoptosis . Moreover, increased expression of p16 and p21, induced by stress conditions, has

protected female but not male astrocytes from transformation . In another promising strategy, the selective

elimination of p16-positive senescent astrocytes diminished cognitive impairment induced by whole brain irradiation

. Lastly, dihydromyricetin (DMY), through the downregulation of p16, p21, and p53, was able to inhibit oxidative

stress and neuroinflammation and to attenuate brain aging and improve cognitive function in mice  (Figure 2).

6. In the Heart

Remarkable p16 expression and cellular senescence were found in cardiac chronological aging and heart failure

. For example, elevated p16 expression and beta-galactosidase activity were found in cardiomyocytes

gathered from Langendorff heart perfusion with aging . In addition to that, cardiac progenitor cells isolated from

elderly (> 70 years old) people expressed high levels of p16 and SASPs, alongside shortened telomeres and

increased SA-β-gal . Furthermore, remarkable telomere shortening and senescent-associated increased p16

expression were found in cardiomyocytes isolated from old rats compared to younger ones . Older patients with

heart failure had higher p16 expression, which was associated with senescence and cell death, as well as shorter

telomere length, when compared to healthy elderly people. This suggests that p16-induced senescence, telomere

attrition, and cell death are features of heart failure in aging . Furthermore, vascular smooth muscle cell (VSMC)

senescence in atherosclerotic plaques was marked by increased p16, p21, and p53 expression in addition to

increased beta-galactosidase activity .

The recovery of cardiac function and cardiac remodeling have been correlated with cardiac stem cell (CSCs)

regeneration and differentiation ability . Cellular senescence has an impact on CSCs and cardiac function,

which might provide a concept of therapies by targeting senescent cells for cardiac functional improvement and

extended lifespan in elderly people . With aging, a significant portion of human CSCs become senescent with
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elevated expression of p16, SA-β-gal, and SASPs, which contribute to CSC senescence and impaired cardiac

regeneration. However, INK-ATTAC or senolytic elimination of senescent CSCs reactivated resident CSCs and

increased cardiomyocyte proliferation  reflecting the importance of p16-positive senescent CSCs as therapeutic

approach for cardiac functional improvement. P16-positive cells that accumulate during adulthood have a negative

impact on lifespan and promote age-dependent changes in the heart. The removal of p16-positive cells delayed

age-related heart deterioration. Thus, the therapeutic removal of these cells may be an appealing approach to

extend healthy lifespan .

On the contrary to the previous studies, the existence of p16 high cells detected in p16-CreERT2-tdTomato mouse

model, was found indispensable for health span, and their elimination has induced cardiac fibrosis .

Furthermore, p16 overexpression has been detected in the infarction zone after myocardial infarction. The

increased expression of p16 was associated with protected cardiac function and plays an important role for cardiac

remodeling after myocardial infarction  (Figure 2).

7. In the Kidney

Several studies have linked p16 induction and subsequent cellular senescence to renal aging, diseases, and

allograft rejection . Age-dependent p16 upregulation in cortical tubular and interstitial cells was observed

in humans. In addition, p16 and p27 expression were higher in the glomeruli, tubules, and interstitial cells of

rejected grafts compared to normal kidneys . Whether this reflects senescence as the underlying mechanism for

chronic allograft rejection as suggested or might correspond to reduced proliferation and repair or to an increased

immune reaction remains to be determined. In line with this, in human kidney specimens ranging from 8 weeks to

88 years of age, p16 induction was negatively correlated with the proliferation marker Ki-67 , which is in

agreement with the role of p16 as a cell cycle inhibitor. Levels of p16 in glomerular and interstitial cells were

significantly higher in kidneys with glomerular disease than in normal aged kidneys and kidneys with tubular

interstitial nephritis. P16 expression was higher in kidneys with proteinuria, with fibrosis, or interstitial inflammation

. Whether this increased P16 expression is cause or consequence of glomerular disease remains an open

question. Similarly, increased p16 expression was observed in kidneys of hypertensive animals and patients and

kidneys with type 2 diabetic nephropathy . Blood pressure lowering reduced p16 expression , which

argues against a close relation between P16 and irreversible senescence in this model. Increased p16 expression

has been reported in acute kidney injury (AKI) and in acute tubular necrosis (ATN) . P16 deletion ameliorated

ATN and improved kidney function in animal models . Similarly, p16 deletion in Bmi-1-deficient mice rescued

kidney aging features including function and structure, ameliorated tubulointerstitial fibrosis, and inhibited epithelial

mesenchymal transition of renal interstitial fibroblasts  (Figure 2).

8. In the Liver

Although the majority of liver functions appear to be preserved with age, evidence of aging and cellular senescence

associated with liver functional decline, reduced regenerative capacity, and diseases are well-documented 
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. P16 expression was higher in elderly hepatectomy patients compared to younger ones, and the increased p16

expression was associated with decreased liver regeneration . This is in agreement with the attenuated

proliferative response of hepatocytes in old rat liver compared to young animals . P16 upregulation was

observed in liver tissue and liver sinusoidal endothelial cells (LSEC) in an aged rat model compared to young

animals . The p16 CreERT2 tdTomato mouse model also demonstrated that p16 high cells were detectable in

the liver, and that they were enriched with aging. The majority of the P16-positive liver cells found were vascular

endothelial, and their removal caused steatohepatitis and perivascular tissue fibrosis . This is compatible

with higher p16 expression level of liver endothelial cells compared to nonendothelial cells demonstrated in recent

study .

With respect to liver metabolism, the extra copy of p16 carried by the “Super-INK4A/ARF” mouse model prevented

the development of glucose intolerance with aging. Instead, increased activation of insulin receptors and high

insulin sensitivity were obtained. This reveals a protective role of INK4A/ARF locus against age-induced insulin

resistance , whereas increased insulin secretion, attenuated insulin sensitivity, and reduced hepatic insulin

clearance were observed upon loss of function mutation of the Cdkn2a gene . On the contrary, p16 deficiency

improved fasting-activated glucose production in the liver, via the activation of PKA-CREB-PGC1α . Altogether,

these studies show the importance of p16 in glucose homeostasis. However, p16 has not been only implicated in

glucose but also in fat metabolism. P16 has been found to regulate fasting-induced fatty acid oxidation and lipid

droplet accumulation in the liver in vivo and in vitro. In addition, p16 deficiency was correlated with increased

expression of fatty acids catabolism genes in primary hepatocytes . Furthermore, p16-positive senescent cell

accumulation has been correlated with hepatic fat deposition and steatosis. Elimination of these cells in the INK-

ATTAC mouse model or senolytics treatment (dasatinib plus quercetin) attenuated liver fibrosis . However, the

feedback loop between lipid accumulation and increased p16 expression remains intriguing. Senescence in

hepatocytes triggered fat accumulation , while high fat diet provoked significantly elevated p16 expression .

Nonetheless, several studies have also described p16 functions in liver cancers. P16 hypermethylation and

consequent p16 inactivation has a pivotal role in the development of hepatocellular carcinoma and liver cirrhosis

. Wong et al. reported aberrantly methylated p16 in the plasma of liver cancer patients, suggesting the

usefulness of these circulating liver-cancer-methylated DNA for the monitoring of tumors . Therefore, all this

information combined suggests that p16 regulation and meticulously unravelling the molecular mechanisms

regulating p16 expression in liver physiology and liver pathologies require further elucidation and could unveil novel

therapeutic strategies for maintaining normal liver function and extending lifespan (Figure 2).
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