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The porphyry type of hydrothermal mineral deposits is of paramount economic importance because deposits of this

type host much of the world’s reserves of Cu, Mo, and Re, as well as much Re and remarkable reserves of critical

elements such as Ag, Pd, Te, Se, Bi, Zn, and Pb. Porphyry deposits are conventionally classified into

mineralogical–geochemical types according to their dominant valuable components. The most economically

important porphyry-type deposits are those of the Cu (Au), Cu–Mo (Au), Mo, and Au types.
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1. Introduction

The porphyry type of hydrothermal mineral deposits is of paramount economic importance because deposits of this

type host much of the world’s reserves of Cu, Mo, and Re, as well as much Re and remarkable reserves of critical

elements such as Ag, Pd, Te, Se, Bi, Zn, and Pb (e.g., ). Porphyry deposits are conventionally classified

into mineralogical–geochemical types according to their dominant valuable components, e.g., . The most

economically important porphyry-type deposits are those of the Cu (Au), Cu–Mo (Au), Mo, and Au types.

Porphyry deposits have been studied for a long time, and their features have been much discussed in many

reviews, e.g., . Detailed reviews were published on the geology and geotectonic settings of porphyry deposits,

zoning of the wall-rock metasomatites, and spatiotemporal relations between the ore mineralization and

magmatism in porphyry systems, e.g., .

Porphyry deposits contain large reserves of ores with low Cu, Mo, and Au concentrations and are genetically linked

to the emplacements and crystallization of melts ranging from diorite to granite in composition. Magma bodies that

generate porphyry mineralization are usually constrained to plate margins, e.g., . Porphyry deposits are

usually zonal  and are stockworks of disseminated and stringer accumulations of sulfides and oxides hosted in

large (up to 10 km ) volumes of hydrothermally altered rocks, which were produced by the large-scale circulation of

hydrothermal fluids at upper crustal levels . Porphyry deposits were found in continental magmatic

belts worldwide, showing evidence of spatiotemporal and genetic relations to hypabyssal porphyritic diorite and

granodiorite intrusions, which were produced by water-rich magmas.

According to the orthomagmatic model , porphyry copper mineralized magmas are usually emplaced into

upper crustal levels (at depths of approximately 5–10 km). The gradually cooling melts approach their saturation
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with volatile components . As soon as the melt reaches its saturation with volatiles, a phase of aqueous

magmatic fluid (whose salinity is not high) is separated from the melt , and some elements (including sulfur,

chlorine, copper, and some other metals) are, therewith, transferred from the melt into the aqueous phase to form

mineralized aqueous magmatic fluid . Magmatic fluid ascends along

fractures and cracks into the already-solid parts of the intrusions, alters host rocks, and comes, due to the pressure

decrease, to the field of two-phase equilibrium, in which pressure is lower than 1300 bar (i.e., the region of ore

deposition). In this region, the fluid exsolves (heterogenizes) into two phases: chloride brine and a low-density

aqueous fluid . The heterogenization of the fluid triggers the onset of ore deposition. The fluids then continue

cooling, interacting with rocks and diluted meteoric waters, and depositing ore and gangue minerals .

Relics of the mineralizing fluids are captured as fluid inclusions, which can provide a record of the evolution of the

parameters and composition of the fluids with time . Many researchers have demonstrated that parameters of

mineral-hosted fluid inclusions in porphyry hydrothermal systems systematically vary in space and with time, e.g.,

. A model developed for H O–NaCl fluid is able to realistically describe the distributions of

various types of fluid inclusions (halite-bearing brine inclusions, gas inclusions, and liquid-rich two-phase

inclusions) over the volumes of porphyry copper deposits . Assemblages of brine and gas fluid inclusions mark

domains with high-grade ores. It is important to specify that the fluid inclusion assemblage (FIA) is usually defined

as the most finely discriminated group of cogenetic fluid inclusions occupying an individual petrographic feature

(e.g., crystal growth-zone or healed fracture), as is unambiguously recognizable by microscopic methods. This

model is able to predict the composition and parameters of fluid inclusions captured by minerals when porphyry

fluid–magma systems spatiotemporally develop, which enables one to utilize these data for various practical

purposes. Although porphyry deposits were studied in much detail, it is still interesting to correlate current

understandings of their genesis with the available data on mineral-hosted fluid inclusions in porphyry Cu–Mo–Au

systems.

It is pertinent to mention the following reviews of fluid inclusions in the minerals of porphyry systems, e.g., 

. Some reviews were devoted to the parameters and composition of fluid inclusions in minerals

from porphyry deposits, e.g., . Fluid inclusions hosted in minerals at porphyry deposits are still actively

studied, and extensive newly acquired data were published after the aforementioned reviews. Differences between

the physicochemical parameters of fluids that produced all of the four types of porphyry deposits in the Cu–Mo–Au

system still have not been adequately analyzed in the literature, likely because of the very broad variations in the

homogenization temperature and salinity of the fluid inclusions.

2. Characterization of Fluids at Porphyry Deposits

When fluid inclusions are characterized, their descriptions are, conventionally, begun with descriptions of how

these inclusions look like at room temperature. Fluid inclusions hosted in minerals from porphyry deposits can be

grouped into the following three types, according to the phase composition of these inclusions at room temperature

(Figure 1).
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Figure 1.  Three major types of fluid inclusions typically hosted in quartz from mineralized veinlets at porphyry

deposits: (a,b) fluid inclusions of high-temperature chloride brines (the photos show dark gas bubbles, transparent

cubic NaCl crystals, opaque chalcopyrite crystals, and solution); (c) gas fluid inclusions (the photos show a gas

phase and a pale rim of aqueous solution; (d) two-phase gas–liquid inclusions of aqueous solutions of intermediate

salinity (the photos show a roundish gas phase and pale aqueous salt solution). The scale bars are 10 µm. L–

aqueous solution, V–gas phase, H–halite, Ch–chalcopyrite.

Type 1. Fluid inclusions of high-salinity brines: these inclusions contain an aqueous solution of high salinity (>26–

30 wt % equiv. NaCl), a vapor bubble, and one or more daughter crystals. Among the latter, halite, sylvite, opaque

or transparent red crystals of hematite and anhydrite have been identified . The triangular transparent phases

are usually identified as chalcopyrite crystals , which provide evidence of a high Cu concentration in the

fluid. Recent Raman spectroscopic studies have identified daughter phases of javorieite KFeCl    and magnetite

.

Type 2. Gas-rich fluid inclusions (> 70 ± 10 vol % gas).
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Type 3. Aqueous salt two-phase fluid inclusions, whose salinity ranges from low to intermediate, and which contain

a gas bubble that occupies 30 ± 10 vol %.

Some authors,  and others, distinguish an individual type of gas fluid inclusions of intermediate density, which

contains an aqueous solution and vapor in equal proportions (L  ≈ V), and which, also, sometimes host a small

opaque crystal. It is thought that these fluid inclusions captured magmatic fluid at a high temperature and pressure

in the region of homogeneous fluid above the vapor−liquid boundary in the system H O−NaCl, and sometimes

contain CO   . Such fluid could be entrapped in fluid inclusions at deeper levels than those where the ore

mineralization was deposited. Due to this, such fluid inclusions cannot be numerous, and they cannot significantly

modify the general situation. Herein, researchers attribute these inclusions to type 2, if such inclusions are

mentioned in publications.

Figure 2  and  Table 1  show the variations of parameters of mineralizing fluids collectively for all of the fluid

inclusions, without subdividing them into types, but only the general ranges of the homogenization temperatures,

salinity, and densities of the fluids. Note that the data on low-density fluid inclusions containing a gas phase can be

incomplete due to purely technical reasons, namely, due to the small volumes of aqueous fluids in these inclusions,

which often make it impossible to microthermometrically study these inclusions. This shall be taken into account

when dealing with the data on fluid inclusions. The gas constituent of mineralizing fluid at porphyry deposits is not

discussed in this entry because such information is still insufficient and because this information cannot

characterize all types of porphyry deposits.

Figure 2. Diagram temperature–salinity for mineralizing fluids at porphyry deposits. 1—fluids at the deposits; 2—

saturated KCl solution; 3—saturated NaCl solution.
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Table 1. Parameters of mineralizing fluids at porphyry deposits.

Deposit, Country, or Area Physical Parameters of Fluid
Type **

of
Deposit

References

T, °C S *, wt % d, g/cm Р, bar    

Bingham Canyon, USA 405 (1) 49.0 1.25 - 2

Butte, USA 275–335 (2) 1.0 0.62–0.76 - 2

Climax, USA 566 (1) 69.0 1.45 - 3

Copper Canyon, USA 250–345 (3) 1.2–40.0 0.80–1.06 - 1

Kalmakyr, Uzbekistan 375–800 (7)
33.8–
69.0

0.94–1.20
1000–1500

(4)
2

Bingham Canyon, USA
350–616

(17)
42.0–
53.0

0.95–1.21 - 2

Coloula, Papua New Guinea 400–700 (4)
34.0–
62.0

0.60–1.30 1200 (1) 1

Inguaran district, Mexico
226–360

(17)
11.9–
36.0

0.78–1.07 - 1

Red Mountain, USA 448–576 (6)
52.0–
68.0

1.12–1.50 - 1

Washington, Mexico 364–550 (2) 34.5 0.81–0.98 - 2

Mines Gaspe, Canada
138-506

(68)
9.5–56.0 0.60–1.25 - 1

Santa Rita, USA 775 (1) 70.0 1.50 - 2

Cumobabi, Mexico 235–480 (8) 2.9–50.0 0.63–1.12 - 2

Questa, USA
150–500

(16)
2.0–57.0 -

800–1400
(8)

3

Sungun, Iran
215–605

(54)
2.2–59.8 0.54–1.12 - 1

Far Southeast, Philippines 450–550 (2)
48.5–
55.0

1.07–1.25 - 4

Shotgun, USA 270–509 (8)
28.0–
69.0

0.76–1.50 - 2
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Deposit, Country, or Area Physical Parameters of Fluid
Type **

of
Deposit

References

T, °C S *, wt % d, g/cm Р, bar    

Bajo de la Alumbrera,
Argentina

745–845 (2) 62.0 - - 1

Escondida, Chile
270–680

(10)
3.0–67.0 0.68–1.23 - 1

Bajo de la Alumbrera,
Argentina

615–845 (3)
45.0–
53.0

- - 1

Rosario, Chile
237–593

(31)
0.7–73.0 0.58–1.65 - 2

Cerro Colorado, Chile 90–544 (32) 0.1–52.0 0.60–1.30 - 2

El Teniente Deposit, Chile
262–515

(49)
2.1–60.5 0.47–1.15 - 2

Bugdainskoe, Russia
205–576

(11)
6.9–70.5 0.66–1.45 - 2

Fenghuangshan, China
122–620

(100)
3.4–71.5 0.63–1.40   1

Talatui, Russia
133–611

(50)
0.4–56.3 0.47–1.21

108–3366
(37)

4

Butte, USA
140–413

(14)
1.0–48.0 0.41–1.14 - 2

Questa, USA
271–429

(21)
2/8–50/0 0/43–1/12 - 3

La Caridad Antigua, Mexico
330–470

(13)
28.0–
56.0

0.95–1.15 - 1

Nevados de Famatina,
Argentina

175–552
(22)

1.5–64.4 0.46–1.48 - 2

Xiongcun, China
121–382

(37)
1.9–34.6 0.59–1.16 - 1

Qiyugou, China
157–460

(24)
3.7–37.2 0.58–1.02 - 4

Bingham Canyon, USA 323–492 (3)
34.7–
50.4

0.90–1.10 - 2

3
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Deposit, Country, or Area Physical Parameters of Fluid
Type **

of
Deposit

References

T, °C S *, wt % d, g/cm Р, bar    

Baogutu, China
151–550

(90)
0.2–66.8 0.46–1.22

307–3128
(9)

2

Qiyugou, China
109–476

(21)
3.9–47.0 0.65–1.10 - 4

Xishizishan, China 131–570 (7) 1.1–54.5 0.87–1.12 - 1

Huashupo, China
191–525

(10)
9.6–49.9 0.70–1.01 - 1

Datuanshan, China 205–437 (7) 7.6–43.8 0.72–1.09 - 1

Tongguanshan, China
289–885

(12)
6.0–44.9 0.64–1.16 - 1

Shizishan, China
148–600

(11)
2.1–56.2 0.52–1.10   1

Shizishan, China
158–610

(13)
2.1–56.2 0.56–1.19 - 1

Shaxi, China
110–520

(10)
8.0–58.0 0.71–1.13 - 1

Tongniujing, China 192–450 (3)
30.0–
48.0

1.00–1.11 - 1

Xiaomiaoshan, China 91–369 (4) 0.7–43.0 0.81–1.14 - 1

Baocun, China 240–310 (4)
16.1–
26.0

0.91–1.01 - 1

Datuanshan, China
160–440

(12)
8.7–29.3 0.67–1.03 - 1

Dongguashan, China 170–450 (7)
17.0–
53.3

0.93–1.12 - 1

Chaoshan, China 220–280 (2) 17.0 0.91–0.98 - 1

Duobuza, China
616–957

(33)
34.0–
74.0

0.75–1.80
400–1600

(15)
1

Mount Leyshon, Australia
150–595

(64)
0.2–61.9 0.38–1.13 - 4
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Overall ranges of the physicochemical parameters. The principal parameters of mineralizing fluids at individual

porphyry deposits of various types in the Cu−Mo−Au system are listed in Table 1. In general, the ranges of the

principal physicochemical parameters of fluids at porphyry deposits are fairly broad, as follows from the data on

2414 groups of fluid inclusions (Figure 2, Table 2): the homogenization temperatures of the fluid inclusions range

from 90 to 957 °C (388 °C on average). As seen in the histogram in Figure 3, most of the fluids were entrapped

into fluid inclusions at temperatures of 200 to 500 °C. Note that publications usually present homogenization

temperatures of fluid inclusions. However, it is now acknowledged that mineral-forming processes at porphyry

deposits begin when the fluid becomes heterogeneous . It is known that if fluid inclusions are entrapped on a

two-phase equilibrium curve, the homogenization temperatures of these inclusions are equal to their entrapment

temperatures . Hence, the homogenization temperatures of early mineral-hosted fluid inclusions at porphyry

Deposit, Country, or Area Physical Parameters of Fluid
Type **

of
Deposit

References

T, °C S *, wt % d, g/cm Р, bar    

Bingham Canyon, USA
313–610

(121)
3.3–59.0 0.42–1.21 - 2

Novoe Manto, Russia 100–365 (9) 9.6–24.2 0.86–1.15 - 1

Jinchang, China
200–620

(42)
0.4–74.0 0.40–1.55 - 1

Maher-Abad, Iran
150–488

(20)
9.5–47.9 0.80–1.13 - 1

Peschanka, Russia
205–506

(10)
0.2–55.0 0.4–1.11 - 1

Kighal, Iran 180–600 (6)
23.0–
70.0

0.79–1.50   2

Malysh, Russia
129–545

(26)
0.7–47.0 0.55–1.09 270–470 (2) 3

Peschanka, Russia
104–506

(40)
0.2–55.7 0.43–1.36 220–540 (8) 1

Nakhodka, Russia
122–581

(10)
2.1–57.8 0.51–1.14 280–850 (3) 1

Dexing, China
105–524

(33)
1.1–63.0 0.58–1.19

1500–3000
(2)

2

Vasil’kovskoe, Kazakhstan
100–550

(126)
2.0–22.5 0.47–1.03

150–2300
(69)

4

Malmyzh, Russia 331–850 (9)
27.0–
80.0

0.95–1.13 - 1

Pebble, USA
147–535

(157)
0.1–61.0 0.41–1.20 - 2

Qarachilar, Iran
190–530

(15)
9.2–55.0 0.65–1.12 - 2

Machangqing, China
202–550

(15)
12.7–
22.1

0.51–1.09 - 2

Yulong, China
220–600

(20)
2.0–46.0 0.48–1.07 - 2

3
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Note: * fluid salinity in wt % equiv. NaCl (numerals in parentheses show the number of determinations); ** types of

porphyry deposits: 1–Cu (Au); 2–Cu, Mo (Au); 3–Mo; 4–Au.

deposits usually correspond to their entrapment temperatures, which allowed researchers to discuss the fluid

temperatures here.

Figure 3. Histogram of the temperature of mineralizing fluids at porphyry deposits.

Table 2. Parameters of mineralizing fluids at porphyry deposits of different types.

Note: * types of porphyry deposits: 1–Cu (Au); 2–Cu, Mo (Au); 3–Mo; 4–Au; n: number of measurements.

It shall be mentioned that some papers report homogenization temperatures of fluid inclusions higher than 600 °C,

with these values obtained using high-temperature heating stages. Such data usually provoke no doubts, if the

publication reports information that these data are reproducible. However, researchers rejected homogenization

temperatures above 700 °C (up to 1290 °C) obtained for the Grasberg deposit , since the authors

themselves were not sure whether these values do characterize the processes that produced the ores. Indeed,

Deposit, Country, or Area Physical Parameters of Fluid
Type **

of
Deposit

References

T, °C S *, wt % d, g/cm Р, bar    

Tongchang, China
240–460

(15)
2.0–52.0 0.80–1.13 - 2

Seleteguole, China
268–483

(54)
2.1–57.4 0.48–1.14 - 2

Malmyzh, Russia
260–525

(10)
0.4–60.0 0.45–1.14 500 (2) 1

Grasberg, Indonesia
255–700

(25)
6.4–74.7 0.48–1.12 - 1

№ 1, China
132–522

(104)
0.9–62.8 0.41–1.19   1

Kışladağ, Turkey
250–600

(35)
1.0–49.0 0.47–1.04 - 4

Grasberg, Indonesia
228–700

(403)
1.4–88.0

0.625–
1.47

- 1

Sadaigoumen, China
211–510

(122)
1.2–50.6 - 10–600 (8) 3

3

[99]

[100]

[101]

[102]

[103]

[104]
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[106]

Types *
of

Deposits
n

Temperature, °C Salinity, wt. % Density of Fluid, g/cm

Interval Average
Arithmetic

Average
GeometricInterval Average

Arithmetic
Average

GeometricInterval Average
Arithmetic

Average
Geometric

All 2414
90–
957

388 372
0.1-
88.0

29.4 28.2
0.38–
1.85

0.93 0.95

1 1017
91–
957

437 421
0.2-
88.0

39.4 41.4
0.40–
1.85

1.00 1.00

2 923
90–
800

359 363
0.1-
73.0

26.3 28.6
0.41–
1.65

0.91 0.96

3 193
129–
566

349 354
0.7-
69.0

13.8 8.5
0.43–
1.45

0.85 0.83

4 280
100–
611

329 341
0.2-
61.9

13.0 9.0
0.38–
1.25

0.81 0.81

3

[102][105]
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fluids at porphyry deposits contain much Fe and can lose protons because of water dissociation when heated to

very high temperatures; the protons can migrate from the fluid inclusions through their host quartz and, thus,

irreversibly change the composition of the fluid inclusions and result in overestimates of their homogenization

temperatures, e.g., .

The salinity of the mineralizing fluids varies from 0.1 to 88.0 wt % equiv. NaCl (29.4 wt % equiv. NaCl on average).

Some salinity values of fluids at porphyry deposits extend outside the H O–NaCl saturation line, but they are no

higher than the KCl solubility. (Figure 2). This is consistent with the sylvite that was found among the daughter

minerals in fluid inclusions and with the occurrence of potassic metasomatites at porphyry deposits. The histogram

of the salinity of the fluids has two maxima, at 0 to 10 and 35 to 45 wt % (Figure 4). This reflects the

heterogenization of fluid, a process during which porphyry deposits start to be formed.

Figure 4. Histogram of the salinity of mineralizing fluids at porphyry deposits.

The density of mineralizing fluids at porphyry deposits also varies broadly, from 0.33 to 1.85 g/cm  (average 0.93

g/cm ), since this parameter is interrelated with, first of all, the temperature and salinity of the fluids. The maximum

variations in the fluid density were found at temperatures above 300 °C (Figure 5), which is also related to the

heterogenization of the fluids. Below 200 °C, the density of the fluids approaches 1 g/cm   because of the

temperature decrease and the occurrence of the fluid in the homogeneous region. The histogram of the fluid

density is unimodal, with its maximum occurring at 1.00 to 1.10 g/cm  (Figure 6).

[34][107][108]
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3
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3
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Figure 5. Diagram temperature–density for mineralizing fluids at porphyry deposits.

Figure 6. Histogram of the density of mineralizing fluids at porphyry deposits.

Some systematic differences were found between the average and maximum values of the parameters of the

mineralizing fluids at porphyry deposits of various types (Table 2, Figure 7).
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Figure 7. Temperature–salinity diagram for mineralizing fluids at porphyry deposits of different types.

The average homogenization temperatures, salinity, and density of the fluids at deposits of various types

commonly systematically decrease from deposits of type 1 to those of type 4. Figure 7 shows that the variations of

the homogenization temperatures and salinity of the fluids at deposits of various types are generally similar, but the

fields of these variations systematically shrink. This situation is not universal for the maximum homogenization

temperatures. The minimum values of the maximum homogenization temperatures of fluids were found at porphyry

Mo deposits (type 3), which may be explained by the fact that the numbers of measurements at deposits of types 3

and 4 are smaller.

The great scatter of fluid parameters at each deposit (for example, the temperature ranges within a few hundred

grades) inevitably puts forth the problem of the significance of the detected differences (for example, the average

temperatures vary within as little as 10–40 °C) between the average parameters of fluids at porphyry deposits of

different types. To sort out anomalous outlier values and be able to more accurately compare available data on

various parameters, including those in the regions with 50% of the data (Figure 8), researchers have constructed

boxplots. The diagram for the temperatures (Figure 8), obviously, shows that porphyry copper deposits of type 1

are noted for the highest maximum and average homogenization temperatures of fluid inclusions. Porphyry

copper–molybdenum deposits of type 2 show intermediate values of the average and maximum temperatures, and

porphyry molybdenum deposits of type 3 and porphyry gold deposits of type 4 are relatively low temperature. The
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situation with the salinity diagrams is generally analogous for the maximum and average values of this parameter

(Figure 8). The highest salinity is typical of fluids at porphyry copper deposits of type 1, intermediate salinity values

were found in fluids at porphyry molybdenum deposits of type 2, and the lowest values were detected in fluids at

molybdenum deposits of type 3 and porphyry gold deposits of type 4. It should be mentioned that fluids at porphyry

molybdenum deposits of type 3 and porphyry gold ones of type 4 yield the narrowest ranges of the dominant

salinity values of the fluids. The density values of the fluids do not vary as widely (Figure 8), but the average

density of the fluids, obviously and systematically, decreases from type 1 (Cu(Au)) to type 4 (Au). This led

researchers to the conclusion that mineralizing fluids at porphyry deposits of different types are different in

composition and have different parameters.
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Figure 8. Boxplots for the homogenization temperatures of fluid inclusions, for the salinity of mineralizing fluids and

for the density of mineralizing fluids at porphyry deposits of various types (1–Cu (Au); 2–Cu, Mo (Au); 3–Mo; 4–

Au).

Here and in  Figure 9, lines in the boxes are medians, crosses are averages, and spots are outliers

(https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51, accessed on 11 September 2018).
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Figure 9. Boxplots for concentrations of Cu, Fe, Mo, and Ag, in mineralizing fluids at porphyry deposits of various

types (1–Cu (Au); 2–Cu, Mo (Au); 3–Mo; 4–Au).
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