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The traditional field-based measurements of carbon dioxide (pCO2) for inland waters are a snapshot of the

conditions on a particular site, which might not adequately represent the pCO2 variation of the entire lake.

However, these field measurements can be used in the pCO2 remote sensing modeling and verification. By

focusing on inland waters (including lakes, reservoirs, rivers, and streams), this paper reviews the temporal and

spatial variability of pCO2 based on published data. The results indicate the significant daily and seasonal

variations in pCO2 in lakes. 

pCO2  remote sensing  satellites  inland waters  CO2 flux

1. Introduction

Inland waters are an important component of the global carbon cycle. They function as active pipes to transport

and transform a large quantity of naturally and anthropogenically derived carbon . They serve as passive

conduits from soil to sea and also divert carbon to the atmosphere and sediment sink. Carbon exchange occurs

through the vertical interactions between inland waters and the atmosphere, often in the form of greenhouse gases

(GHGs). The globally averaged surface temperature (combining land and ocean) has increased by approximately

1.0 °C (0.8–1.2 °C) above the pre-industrial levels . Rising emission of natural and anthropogenic GHGs is highly

likely to be the dominant cause of the observed warming since the mid-20th century . Carbon dioxide (CO ) in

the atmosphere is the most important GHG because it can enhance the greenhouse effect, with a contribution rate

of 60%. A global CO  emission survey on inland waters indicated that 95% of the 6708 streams and rivers have a

median partial pressure of carbon dioxide (pCO ) greater than the atmospheric value, and 7939 lakes and

reservoirs are supersaturated . The CO   flux released by inland waters is of the same order of magnitude as

land–atmosphere and land–ocean net carbon exchanges. Hence, long-term monitoring of  pCO   and

CO  emissions from inland waters is essential for quantifying and understanding how inland waters contribute to

the global carbon cycle .

The response of regional inland waters to global change has attracted the attention of the international research

community . Over the past decade, most of the research efforts have been on refining CO  flux estimation at the

regional and global scales . Nevertheless, the quantification of the  pCO   in inland waters is also

important for accurately estimating CO   flux in the water–atmosphere interface and understanding the role of

CO   in inland waters in the Earth’s carbon budget. Some studies reported about the significant spatial and

temporal variations of the pCO  in lakes and rivers  and the strong influence of ambient environment

and river discharge on the  pCO   of inland waters . However, the current  pCO   data of inland waters
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remain uncertain due to the large discrepancy of  pCO   in the global inland waters. Moreover, the variation in

CO   flux estimation to the atmosphere stems not only from the limited spatiotemporal data availability, but also

from various methods in an un-unified  pCO   estimation approach . The common methods include the

direct measurement of in situ pCO  using an air-flushing equilibrator connected to an infrared photoacoustic gas

analyzer ; the underway pCO   system ; the underwater sensors, e.g., C-Sense , HydroC -CO   and

Franatech CO -sensor ; calculation of  pCO   based on in situ pH, total alkalinity, water temperature, and

salinity values of inland waters ; and estimation of pCO  based on the dissolved CO  concentration in the water

. There is a lack of an effective and generalized method to characterize the spatial and temporal dynamics

of pCO  in detail, particularly in some regions with a large freshwater surface area and regions sensitive to climate

change . According to climate model projections, extreme climatic events (e.g., rainfall and flood) would

increase in some regions . Some studies showed that intense rainfall events and floods could modify the

water–atmosphere exchange of CO   . It is necessary to develop a common method to

estimate pCO  which covers long-term records and large spatial coverage, so that we could better illustrate the

potential impact of such events on pCO   and accurately quantify CO   flux and the role of inland waters in the

global carbon cycle. Over the past two decades, remote sensing of pCO  in the water environment has received

much attention due to its unique advantages against the traditional field-based technologies . In addition, this

method has the ability to achieve the simultaneous observation and comparison of pCO  values in different waters

and different times over the same location. The assessment of  pCO   variations based on multi-source remote

sensing data has contributed greatly to the accurate quantification of CO  flux in the atmosphere–water interface at

high-spatiotemporal resolution in the ocean and coastal waters , while a similar attempt has also been

conducted in the inland waters .

2. Remote Sensing of pCO

According to existing theoretical analysis and research results, pCO  in water surface cannot be directly derived

from satellite radiance. It is mostly an indirect measurement that requires the estimation of other variables first. The

remote sensing of pCO   in water surface requires some environmental variables related to the pCO  controlling

processes as indicators (e.g., water surface temperature (T), water salinity (S), plankton concentration (Chla),

colored dissolved organic matter (CDOM), mixed layer depth). There is also some directly remote sensing research

of the dissolved CO  concentration or pCO  by developing the estimation model based on satellite imagery-derived

products. At present, while remote sensing technology has been successfully applied for the estimation of pCO  in

water surface, most of these studies focused on ocean and coastal waters.

2.1. Remote Sensing Estimating pCO  in Marine and Coastal Waters

Research on remote sensing of pCO  in sea and coastal waters has received much attention in recent years. It is

useful for the accurate description of the spatial-temporal heterogeneity of sea-surface CO  flux and for quantifying

the ocean’s role in the global carbon cycle . Moderate-Resolution Imaging Spectroradiometer (MODIS)

imagery and MODIS-derived products are more commonly used in these  pCO   remote sensing inversion

processes . Related studies using statistical approaches and machine learning techniques have been
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conducted in many seas and coastal sites (Figure 1), e.g., the Gulf of Mexico , East China Sea ,

Caribbean Sea , Bering Sea , and West Florida Shelf . In general, the empirical algorithms (e.g., linear or

multiple regression relationships) and machine learning approaches can work reasonably well with

good pCO  inversion results in the specified areas . However, pCO  in the open ocean and coastal regions

often exhibits a profound spatiotemporal heterogeneity and is controlled by multiple factors. Due to

incomprehension of pCO  variability mechanisms, these empirical algorithms can only function reliably for areas

with available in situ pCO  data. Thus, more complex semi-analysis algorithms, combined with the analysis of the

main mechanisms causing pCO  variability, have been developed in different coastal waters and seas, such as the

first implementation of a mechanistic semi-analytic algorithm (MeSAA) in the East China Sea . A satellite-

based semi-mechanistic model was developed for the river-dominated Louisiana Continental Shelf , while a

nonlinear semi-empirical model with the self-organizing map (SOM) was implemented in the Pacific coast of central

North America . Nevertheless, the existing semi-analytical algorithms also have limited applicability in different

regions, primarily because of the difficulty in parameterizing and standardizing the physicochemical and biological

influence on  pCO   in sea and coastal waters. In the process of constructing the  pCO   remote sensing

algorithm/model, it is important to choose and develop accurate quantitative expressions relating satellite-derived

parameters based on controlling mechanistic analysis, which can assist to better implement remote sensing

of pCO  in the similar oceanic conditions.

Figure 1. Locations of published works on remote sensing of the surface pCO  in sea and coastal waters.

According to a survey of literature, the net sea–air CO  flux of the global ocean is approximately 1.4 Pg y   , and

this value is subjected to large uncertainty. The air–sea CO  fluxes are different depending on the latitudinal and

ecosystem diversity of the coastal ocean (particularly near-shore systems). The physical-biogeochemical

distinction (including ocean-dominated margin and river-dominated ocean margin) has significant influence on the

sources’/sinks’ role of coastal waters . In addition, the marginal seas at high and temperate latitudes often act as

sinks of atmospheric CO ; at subtropical and tropical regions, the marginal seas in these two climatic zones act as

[36][46][47] [48][49]

[43] [39] [42]

2
[36][38][47]

2

2

2

2

[39][46][49]

[50]

[51]

2 2

2

2

2
−1 [52]

2

[53]

2



PCO2 in Inland Waters | Encyclopedia.pub

https://encyclopedia.pub/entry/18735 4/10

sources of atmospheric CO   . When integrating CO  fluxes in the coastal ocean at the global scale, the diversity,

latitudes, and seasonal biological effect on ecosystems should be fully considered.

2.2. Remote Sensing of pCO  and CO  Fluxes for Inland Waters

Typically, inland waters are characterized by the supersaturated, dissolved CO  concentrations. However, there are

huge differences in optical properties, physicochemical environments, trophic status, and circulation of materials

between inland waters and ocean/coastal waters . Some effective remote sensing algorithms and

models for  pCO   in ocean/coastal waters cannot be used directly for that in inland waters. Considering the

influencing factors and mechanisms of surface pCO  in inland waters, some remote sensing algorithms for pCO  in

inland waters have been developed based on the relationship between  pCO   and the retrieved water

biogeochemical and optical parameters, e.g., chromophoric dissolved organic matter (CDOM) optical property,

algal productivity, and water surface temperature . Earlier studies demonstrated that the temporal and spatial

distributions of pCO  in inland waters often exhibited high heterogeneity, which resulted in a large uncertainty in

lake CO  flux calculations. Satellite observations of pCO  in inland waters could achieve a relatively high frequency

and continuous, large-scale, and long-term data compared to field surveys. There are growing studies in this area

in recent years despite a small number of published works. Combining with a high-resolution (25-m resolution),

stream network map based on remote sensing, a Random Forest model was applied to predict the

stream  pCO   with an average of 1134 μatm (range: 154–8174 μatm) in Denmark, Sweden, and Finland .

Estimations of inland waters’ CO  emissions have been realized in relation to terrestrial net primary production,

which can be obtained from a global data set based on remote sensing, such as in a temperate stream network 

and in boreal lakes . More recently, optical indicators generated from satellite-derived variables have been

utilized to estimate pCO  indirectly in some rivers and lakes based on the strong relationship between them, such

as CDOM optical properties used in the Lower Amazon River  and a turbidity index used in the Swedish lakes

Mälaren and Tämnaren . Nevertheless, the direct application of the long-term satellite products to

estimate pCO  or dissolve CO   in inland waters is still in its infancy. The long-term series mapping of dissolved

CO  pattern based on the remote sensing technology was conducted in Lake Taihu, China, which developed a

dissolved CO  estimation model based on MODIS-derived products. It was applied to perform the spatiotemporal

distribution analysis of dissolved CO  concentrations from 2003 to 2018 . MERIS products have also been used

to estimate lake pCO   .

When using long-term remote sensing imagery to directly estimate the CO  concentration or pCO   in waters or

retrieving pCO  in water from some relevant environmental remote sensing indicators based on stable relationship

, it should be noted that the retrieved CO  concentration or pCO  values are the instantaneous value at the

satellite transit time. The previous studies showed some pronounced changes in the CO  concentration over a day

and seasons . To achieve the transformation of retrieved pCO  values from an instant to hours/days, some

researchers have established the relationship between instantaneous lake CO  concentration/pCO  at the regular

satellite flyover and the daily/weekly mean value  by using the satellite estimation results to extrapolate the

daily/weekly CO   mean values. In addition, combined with the in situ measured values of the

diurnal pCO  variation and seasonal pCO  variation in a lake, we could realize the conversion of the daily value to
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the seasonal mean value of the lake’s CO  through cross verification between different sensors with different time

resolutions. More observations and additional efforts would be needed to achieve them in the further studies.

In fact, researchers have a full understanding of biogeochemical mechanism of CO  generation and consumption

in inland waters. Most of the determining and influence factors of pCO  or dissolved CO  in different inland waters

have been elucidated. Some of these factors can be derived from satellite data, e.g., lake surface temperature,

chlorophyll-a concentration, latitude, dissolved organic carbon (DOC), and solar radiation absorption. Therefore, in

principle, it is possible to identify the spatiotemporal distribution of  pCO   in a specific lake or river using the

satellite-derived variables and realize the long-term estimations. However, the accuracy and universality of the

prediction models should be developed and evaluated as a priority in the large-scale estimation. Nevertheless, it is

known that the relationships in the prediction models can vary among different lakes and lake regions, which is the

current challenge of the  pCO   remote sensing in inland waters . Due to the great

influence of outside source input, the geochemical processes of inland lakes can show strong spatial

heterogeneity, and the influence factors of the pCO  in surface water are often coupled together. This leads to the

unstable, non-universal relationship between pCO  and its indicators among different lakes and lake regions and

the large uncertainties from such extrapolations. Consequently, the development of the inverse models based on

dissolved biogeochemical processes and the machine learning algorithm based on lots of measurement data may

have better applicability over longer periods and across larger spatial scales.
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