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Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal

essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health.

A total of twenty-one genes for the flavonoid pathway of maize was described. The first three genes participate in

the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and

fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides.

Zea mays L.  anthocyanins  biosynthesis  flavonoids

1. Introduction

The comprehension of the maize flavonoid pathways is necessary for plant breeders who want to develop new

pigmented maize varieties with better nutraceutical properties and for any health and food scientists working with

phenolic compounds. The diversity in the palette of color in maize seeds correlates with differences in the pigment,

including carotenoids and flavonoids. Researchers will deepen into these aspects to explain the impressive

correlation between plant color, plant survival, and human health.

In maize (Zea mays L.), flavonoids act as deterrents against herbivores, regulate pollen development, and have

defensive roles against UV-B radiation . Flavonoids are a large family of phenolic compounds that share a

biosynthetic pathway and, therefore, a common chemical arrangement. The basic structure consists of a C15

skeleton arranged in a C6-C3-C6 where one of the C6 corresponds to a phenyl that is bound to a benzopyran (C6-

C3) denominated chromene according to the IUPAC nomenclature (Figure 1). Flavonoids originate from the

mevalonate and phenylpropanoid pathways converging in C6-C3-C6 compounds. Some flavonoid molecules

differentiate themselves by the chemical changes in the pyran ring, also known as the flavonoid’s C ring . For

example, anthocyanidins have a modified benzopyran structure with a double bond between the oxygen atom and

C2, forming the flavylium cation. Meanwhile, flavones have a double bond between carbons 2 and 3 and a

carbonyl group at the C4 position.

[1][2][3]

[4][5]
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Figure

1. Chemical structure of flavonoid subgroups and the basic C6-C3-C6 skeleton (2-phenyl-2H-chromene). A, B, and

C refer to a specific ring of the flavonoid skeleton.

2. Structural Protein Genes of the Maize Flavonoid Pathway

2.1. Phenylpropanoid Pathway

The first enzymatic steps in the flavonoid pathway are from three genes of the phenylpropanoid pathway (Table 1).

These three enzymes direct the transformation of phenylalanine to coumaroyl-CoA. Those genes

are  ZmPAL  (phenylalanine ammonium lyase, multiples genes, EC 4.3.1.24) ,  ZmC4H  (cinnamic acid 4-

hydroxylase, Zm00001d009858, EC 1.14.14.91) , and Zm4CL (4-coumarate CoA ligase, bm5, EC 6.2.1.12) .

The three genes share a similar expression profile of downstream genes in the flavonoid pathway in anthocyanin-

pigmented tissues . Recent analyses have demonstrated multiple gene families in flavonoid biosynthesis with

a tissue-specific expression. In addition, some genes such as Zm4CL codify various isoforms, each of which has

specific functions . The research on these genes focuses on their roles in lignin biosynthesis . For example,

under sugarcane mosaic virus (SCMV) infection,  ZmPAL  and  ZmC4H  genes are upregulated, generating the

substrate for lignin production . Meanwhile, studies on a brown midrib5 maize line demonstrated that a Zm4CL

mutant was responsible for defective lignin biosynthesis . There is a correlation between anthocyanins and lignin

where the fungi Ustilago maydis activates the anthocyanin but reduces the lignin biosynthesis, thus facilitating its

invasion into the maize seed .

Table 1. Summary of genes involved in the early steps of the maize flavonoid pathway.

[6]

[6][7] [8]

[9][10]

[11] [8]

[6]

[12]

[13]

Gene Name Locus Enzyme/Protein Name EC Reference

(ZmPAL) m* Phenylalanine ammonium lyase 4.3.1.24

(ZmC4H) 8L Cinnamic acid 4-hydroxylase 1.14.14.91

bm5 (Zm4CL) 5 4-Coumarate CoA ligase 6.2.1.12

[6]

[6][7]

[12]
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EC code and locus were obtained from BRENDA  and MaizeGDB , respectively. The m* means multiple loci.
2.2. Early Biosynthetic Genes of Flavonoids

2.2.1. Chalcone Synthase (ZmCHS, c2, EC 2.3.1.74)

The first crucial step in flavonoid biosynthesis (Figure 2) is the production of the naringenin chalcone (C6-C3-C6)

from the condensation of three molecules of malonyl-CoA (3 × C2) using a 4-coumaroyl-CoA (C6-C3) as substrate

. This gene is also known as polyketide synthase (PKS) type III. The chalcone synthase (CHS) works similarly to

other PKS enzymes from the mevalonate/acetate pathway . The reaction extends the aliphatic chain from the

coumaroyl-CoA three times using two carbon units from a malonyl-CoA. Then, an intramolecular Claisen

condensation occurs to form the second aromatic ring.

Gene Name Locus Enzyme/Protein Name EC Reference

c2 (ZmCHS) 4L Chalcone synthase 2.3.1.74

whp1 (ZmCHS) 2L Chalcone synthase 2.3.1.74

chi1 (ZmCHI) 1L Chalcone isomerase 5.5.1.6

fht1 (ZmF3H) 2S Flavonoid 3-dioxygenase 1.14.11.9

pr1 (ZmF3′H) 5L Flavonoid 3′-monooxygenase 1.14.14.82

[14]

[15]

[16]

[17]

[18]

[19] [20]

[21]

[4]
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Figure 2.  Early genes in the flavonoid pathway. The flavonoid pathway begins with the transformation of

phenylalanine to coumaroyl-CoA. The last steps end with the intravacuolar accumulation of acylated anthocyanins.

The genes responsible for supplying the coumaroyl-CoA into the flavonoid pathway are phenylalanine ammonium

lyase (ZmPAL, EC 4.3.1.24), cinnamic acid 4-hydroxylase (ZmC4H, EC 1.14.14.91), and 4-coumarate CoA ligase

(Zm4CL,  bm5, EC 6.2.1.12). The flavonoid genes are divided into early biosynthetic genes (EBGs) and late

biosynthetic genes (LBGs). EBGs comprise four genes: chalcone synthase (ZmCHS, c2, EC 2.3.1.74), chalcone

isomerase (ZmCHI,  chi1, EC 5.5.1.6), flavonoid 3-dioxygenase (ZmF3H,  fht1, EC 1.14.11.9), and flavonoid 3′-

monooxygenase (ZmF3′H, pr1, EC 1.14.14.82). References: .

Genome-wide analysis revealed up to 15 ZmCHS genes in the maize genome (Han et al., 2016). However, the

members more consistently studied are the duplicated c2 (ZmCHS01) and whip1 (ZmCHS02) genes (Table 1) .

Multiple tissues, including tassels, ear husks, and the aleurone layer of endosperm at different developmental

stages, express the genes c2  and  whip1  . Indeed, functional alleles for genes  c2  and  whip1  are vital to

increasing the biosynthesis of any flavonoids downstream, such as apigenin and tricin, essential for lignin

formation, and C-glycosyl flavones . Meanwhile, members of the chalcone synthase family, such

as  ZmCHS013  and  ZmCHS014, compared to  ZmCHS01, had a lower expression in most tissues and different

responses under the stimuli of salicylic acid .

[20][22]

[14]

[23][24]

[15][25]

[26]
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2.2.2. Chalcone Isomerase (ZmCHI, chi1, EC 5.5.1.6)

This enzyme catalyzes an intramolecular Michael-type addition from the chalcone 2-O  to its α,β-unsaturated

carbonyl (Figure 2). The final product is the typical phenyl-chromanone or flavanone structure . The first gene

sequenced from this family in maize was ZmCHI  (Table 1) . Interestingly, mutants have not been reported in

maize for this gene, due to the multiple homologous sequences found for  ZmCHI  in the maize genome. An

experiment designed to find QTLs for resistance to Fusarium corn fungi detected ZmCHI3 as a second member of

the family . Indeed, a transformed maize callus with a copy of  ZmCHI3  from a resistant inbred was less

susceptible to maize plagues.

2.2.3. Flavonoid 3-Dioxygenase (ZmF3H, fht1, EC 1.14.11.9)

ZmF3H is a Fe  and 2-oxoglutarate-dependent dioxygenase that introduces a hydroxyl group in position 3 of the

chalcone structure, generating a dihydroflavonol . There is just one gene copy known in the maize genome. In a

previous report, ZmF3H was found to be the only gene in the flavonoid pathway in which mRNA expression levels

correlate with the synthesis of flavonols in anthers . Moreover, its expression increases in pigmented kernels

compared to white seeds .

2.2.4. Flavonoid 3′-Monooxygenase (ZmF3′H, pr1, EC 1.14.14.82)

This pr1 or purple aleurone1 gene has been studied in maize because its alleles are responsible for changes in

color pigmentation caused by a difference in anthocyanin profile . ZmF3′H is monooxygenase hydroxylate in

the 3′ position from the phenyl ring B (Table 1). When the gene is functional, its enzyme can produce blue/violet-

colored anthocyanidins (cyanidin and peonidin). If not, it generates a red/orange mono-hydroxylated pelargonidin

. Red kernels are homozygous for the recessive alleles pr1 that do not produce functional enzymes, resulting in

the pelargonidin-base anthocyanins predominating over the anthocyanin profile. The dominant Pr1 alleles have a

gene dose effect in the purple kernel pigmentation, which means that each  Pr1 allele in diploid (vegetative) or

triploid (endosperm) tissues increase the cyanidin-base anthocyanins (Figure 2) in the pigmented tissue .

Moreover,  ZmF3′H  has a role in the biosynthesis of 3-deoxyflavonoids and phlobaphene; as occurs with the

anthocyanins, the precursor transforms into a di-hydroxylated phenyl ring B compound . A Pr1 allele is essential

for the resistance against biotic stress depending on C-glucosyl flavone (maysin) accumulation in salmon-colored

silks .

2.3. Late Biosynthetic Genes of Maize Anthocyanins

2.3.1. Dihydroflavonol 4-Reductase (ZmDFR, a1, EC 1.1.1.219)

This enzyme converts the dihydroflavonol (or flavanonol) to a flavan-3,4 diol by reducing the 4-carbonyl (Figure

3 and Table 2) . There is a hypothesis that this enzyme has a role in phlobaphene biosynthesis by transforming

the 4-carbonyl into flavanones to produce 4-flavan-4-ol . The gene locus of  ZmDFR, a1, has been deeply

studied for two reasons. The first is its linkage to the sh2 gene, responsible for the shrunken seed phenotype, that

[4]

[16]

[27]

2+

[17]

[28]

[9]

[29][30]

[18]

[31]

[32]

[33]

[34]

[35]
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made possible the studies on transposable elements and meiotic recombination hotspots in the a1-sh2 interval 

. The second reason is that the gene product is a vital enzyme in the flavonoid pathway, favoring which flavonoid

subgroup could be biosynthesized . If there is a functional allele, it can produce anthocyanidins (Figure 3) and

phlobaphenes (see Section 2.4.1). However, two copies of a non-functional allele would redirect it to flavanol and

flavone biosynthesis .

Figure 3.  Biosynthetic genes for maize anthocyanin pathway. After the formation of the dihydroflavonol, five

enzymatic steps catalyze its biotransformation into acylated maize anthocyanins. Those genes are the following:

dihydroflavonol 4-reductase (ZmDFR,  a1, EC 1.1.1.219), anthocyanidin synthase (ZmANS,  a2, EC 1.14.20.4),

anthocyanidin 3-O-glucosyltransferase (ZmAGT, bz1, EC 2.4.1.115), malonyl-CoA: anthocyanin 3-O-glucoside-6′′-

O-malonyltransferase (Zm3MAT,  aat1, EC 2.3.1.171), and flavonoid 3′,5′-O-methyltransferase (ZmAOMT, EC

2.1.1.267). The glutathione S-transferase (ZmGST,  bz2, EC 2.5.1.18) and multidrug resistance protein

(ZmABCC3  and  ZmABCC4, MRP3 and MRP 4, EC 7.6.2.2) are required to deliver them inside the vacuole.

References: .

Table 2. Summary of anthocyanin genes in the maize flavonoid pathway.

[36]

[37]

[38]

[39]

[20][22]

Gene Name Locus Enzyme/Protein Name EC Reference

pr1 (ZmF3′H) 5L Flavonoid 3′-monooxygenase 1.14.14.82

a1 (ZmDFR) 3L Dihydroflavonol 4-reductase 1.1.1.219

[18]

[34]
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* Not found yet in maize. EC code and locus were obtained from BRENDA  and MaizeGDB , respectively.

The role of  ZmDFR  in the diversification of flavonoids is further exemplified by its interaction with multiple

transcription factors . ZmDFR1 has a gene duplication in the maize genome, known as a4. Nevertheless, it is

not clear if there is an active protein in the tissue from the genomic sequences alone . Both genes have a higher

expression in pigmented kernels than in anthocyanin-less seeds .

2.3.2. Anthocyanidin Synthase (ZmANS, a2, EC 1.14.20.4)

The dioxygenase ZmANS oxidizes at the C-3 position of a flavan-3,4 diol, generating a flavan-3,3,4 triol (Figure 3)

. After oxidation, two water molecules are removed, producing an anthocyanidin molecule . Moreover,

the ZmANS gene expression is upregulated in pigmented kernels compared to white seeds through elements that

conserve the promoter region for the MBW complex . The a2 is the unique copy known in the maize genome.

2.3.3. Anthocyanidin 3-O-Glucosyltransferase (ZmAGT, bz1, EC 2.4.1.115)

This enzyme is also known as UDP-flavonoid glucosyltransferase (ZmUFGT). It catalyzes the transference of

glucose to the C-3 position of anthocyanidins (Figure 3) . This locus is named bronze1 since  bz1  alleles

cannot produce a functional gene product and are responsible for the bronze-colored aleurone . Glycosylated

anthocyanidins (anthocyanins) accumulate in a vacuole only when the  ZmAGT  is functional. If not, the

anthocyanidins are prone to oxidation, turning into brown pigments in the cell wall . The expression occurs in all

anthocyanin pigmented tissue because it contains conserved elements in its promoter, as other genes are

upregulated simultaneously by the MYB-bHLH-WD40 (MBW) complex .

The locus bz1 is located in the intergenic region bz1-stc1, known for the varying copies of transposable elements

. A relevant study included the first discovery of the first DNA transposable element, the Ac/Ds transposon,

that resulted in a Nobel Prize being awarded to Dr. McClintock . The Ds activation by marker Ac produces a

chromosome rupture of chromosome 9 short arm region, which was recognized phenotypically by the apparition of

bronze-colored spots in the kernel .

Gene Name Locus Enzyme/Protein Name EC Reference

-(ZmLAR) - Leucoanthocyanidin reductase 1.17.1.3 - *

a2 (ZmANS) 5S Anthocyanidin synthase 1.14.20.4

bz1 (ZmAGT) 9S
Anthocyanidin 3-O-
glucosyltransferase

2.4.1.115

aat1 (Zm3MAT) 1L
Malonyl-CoA: anthocyanin 3-O-

glucoside-6′′-O-malonyltransferase
2.3.1.171

omt1 and omt4- (ZmAOMT) 4L
Anthocyanin S-adenosyl-l-methionine-

dependent O- methyltransferase
2.1.1.267

bz2 (ZmGST) 4L Glutathione-S-transferase 2.5.1.18

mrpa3 (ZmABC3) mrpa4 (ZmABC4)
9S
1S

Multidrug resistance-associated
protein or ATP-binding cassette

transporter
7.6.2.2

[40]

[41]

[42]

[43][44]

[45]

[46]

[19] [20]

[9][10]

[34]

[9]

[17] [47]

[9][40]

[48][49]

[41][50]

[51]

[50][52]

[53][54]

[55]

[56]
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2.3.4. Malonyl-CoA: Anthocyanin 3-O-Glucoside-6′′-O-Malonyltransferase (Zm3MAT, aat1, EC
2.3.1.171)

Two types of acyl moieties can modify the glycosidic part of the anthocyanins in the Plantae kingdom, aromatic and

aliphatic dicarboxylic acids. Zm3MAT  (Figure 3) was the first anthocyanin acyltransferase (AAT) discovered not

only in maize but also in monocots . Zm3MAT is necessary to produce mono-malonylated anthocyanins, the

most common type of anthocyanins in the aleurone layer . Zm3MAT was selected as a QTL for the reduced

acylation phenotype and then corroborated through a knockout by Mu transposon insertion . Further research

showed that Zm3MAT exerts a dimalonyl transferase activity and can utilize both acyl moieties malonyl-CoA and

succinyl-CoA, but it is more specific for malonyl-CoA . The spectrum of anthocyanin selectivity ranges from the

most preferable to the least preferable as follows: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-

O-glucoside, and delphinidin-3-O-glucoside.

2.3.5. Flavonoid 3′,5′-O-Methyltransferase, or Anthocyanin S-Adenosyl-l-Methionine-
Dependent O-Methyltransferase (ZmFOMT or ZmAOMT, EC 2.1.1.267)

This enzyme catalyzes the methylation of a hydroxyl group in the -3′ or -5′ position of the 3-hydroxyflavonoid’s

phenyl B-ring (Figure 3) . The enzyme uses several flavonoids as substrates, not just anthocyanins. These

include aglycone and glycosylated forms of flavonols or anthocyanidins. However, every member has a specific

affinity that favors some substrate above others . Unfortunately, in maize, this enzyme has not been

characterized yet. However, Chapman and collaborators mentioned two candidate genes,

namely  omt1  (Zm00001d052841) and  omt4  (Zm00001d05284), for anthocyanin  O-methyltransferases related to

QTLs for peonidin-base anthocyanins .

2.3.6. Glutathione-S-Transferase (ZmGST, bz2, EC 2.5.1.18)

The glutathione S-transferase (GST) family in maize includes more than 40 GST gene sequences . This family

of enzymes detoxifies cells affected by xenobiotics, such as herbicides, by conjugating a glutathione (GSH)

molecule . After being labeled with glutathione, these molecules are sent out of the cell by an ATP-

dependent glutathione conjugate export pump . However, the bz2 gene, a GST type III, is supposed to label the

anthocyanin to be recognized by a vacuolar glutathione pump, and then the labeled anthocyanin is transported into

the vacuolar lumen . Until now, there is no evidence that shows that anthocyanins are conjugated with GSH.

However, the role of bz2  in the accumulation of anthocyanins is accepted. Other researchers suggested that this

enzyme may function as a carrier protein for vacuolar anthocyanin sequestration .

When  ZmGST  is not functional, the anthocyanins are not transported to the vacuole interior. Then, the

intravacuolar pH and environment contribute to maintaining these molecules without degradation . As described

for bz1, a maize plant without functional alleles will develop a bronze-colored kernel . ZmGST is upregulated in

pigmented tissue because it shares conserved binding sites in the promoter region for the MBW complex

interaction, a characteristic shared with other upstream genes in the flavonoid pathway .

[42][57]

[58]

[42]

[57]

[43]

[58]

[44]

[59]

[60][61][62]

[63]

[45][63]

[64]

[65]

[51]

[9][66]
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2.3.7. Multidrug Resistance Protein (ZmABCC3 and -4, mrpa3, EC 7.6.2.2)

ZmABCC3 is part of a broader ATP-binding cassette (ABC) superfamily protein containing up to 130 open reading

frames . In maize, this superfamily of transmembrane proteins anchored to the cell membrane is highly

specialized in expelling xenobiotics from the intracellular environment . However, ZmABCC3 and ZmABCC4 are

present in the tonoplast of vegetative tissues and in the aleurone layer, respectively .

This protein follows a similar expression profile to other genes related to anthocyanin biosynthesis . Recent

research in species such as  Vitis vinifera  and  Arabidopsis thaliana  shows that their homologous sequences

to ZmABBC3 are GSH/anthocyanin co-transporters .

2.3.8. Flavanol-Anthocyanin Condensed Forms

The flavanol-anthocyanin condensed forms are compounds found in maize; however, there is still no description of

a known enzyme producing them . Their biosynthesis starts with the generation of the flavan-3-ol unit (Figure

3). The leucoanthocyanidin reductase (E.C. 1.17.1.3) participates in a reduction reaction in the C-3 position of the

leucoanthocyanidin . This enzyme is yet unidentified in maize. Then, a linkage occurs between the

anthocyanin and the flavan-3-ol, but there is no recognized enzyme for this process (Figure 3). However, it is

known that a QTL for the flavanol-anthocyanin condensed form was mapped near the p1 locus .

In wine, the presence of flavanol-anthocyanin condensed forms is related to aging. However, in maize, there is

evidence of natural formation . The production of flavanol-anthocyanin condensed forms consumes monomeric

anthocyanin, therefore reducing the total concentration .

2.4. Biosynthesis of Flavonols, Flavones C-Glycosides, and Phlobaphenes in Maize

2.4.1. Flavonol Synthase (ZmFLS1, fls1, EC 1.14.20.6)

The flavonols are important in maize due to their effects on male fertility and UV-B protection . Flavonol

synthesis depends on flavanone 3-dioxygenase and flavonol synthase, a Fe /2-oxoglutarate dependent

dioxygenase (Figure 4 and Table 3). The transcription factors that regulate the expression of anthocyanins and C-

flavone glycosylated biosynthetic genes can also upregulate the expression of ZmFLS1  . In the maize genome

are two copies (ZmFLS1  and  ZmFLS2) in tandem in the long arm of chromosome 5. The expression of both

enzymes was augmented under UV-B light and in high-altitude landraces compared to the inbred lines through an

increased p1 expression .

[62]

[67]

[46]

[9][68]

[69][70]

[71]

[44][72]

[44]

[71]

[57]

[73]

2+

[1][17]

[1][3]
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Figure 4. The biosynthetic genes of flavonol and phlobaphenes. The flavanones naringenin and eriodyctiol are the

starting substrates for the other flavonoid subgroups. Flavonol synthesis depends on flavanone 3-dioxygenase

(ZmF3H, fht1, EC 1.14.11.9) and flavonol synthase (ZmFNS1, fns1, EC 1.14.20.5). Phlobaphene synthesis begins

with the action of dihydroflavonol 4-reductase (ZmDFR, a1, EC 1.1.1.219) on flavanones, generating flavan-4-ol

molecules that undergo a non-enzymatic polymerization into phlobaphenes. References: .

Table 3. Summary of flavonol and flavone C-glycoside genes in the maize flavonoid pathway.

[20][22][74]

Gene Name Locus Enzyme/Protein Name EC Reference

fls1 (ZmFLS1)
fls2 (ZmFLS2)

5L
5L

Flavonol synthase 1.14.20.6 [1]
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EC code and locus were obtained from BRENDA  and MaizeGDB , respectively.

2.4.2. Flavone Synthase I (ZmFNSI1-2, fnsi1, EC 1.14.20.5) and Flavone Synthase II (ZmFNSII-
1, fnsii1, EC 1.14.19.76)

Maize possesses three enzymes that can synthesize flavones from a flavanone, flavone synthases I and II, and

flavone 2-hydroxylase (Figure 5) . The flavone synthase produces a desaturation in the C2–C3 bond in the

flavanone through an oxidation reaction. The oxidative mechanism in ZmFNSI is a Fe /2-oxoglutarate-dependent

dioxygenase, like in ZmFLS1, whereas that in ZmFNSII is CYP450 . In addition, ZmFNSI1 is upregulated more in

tassels than in silks compared to  ZmF2H  . The  p1  transcription factor regulates the expression of  ZmFNSI.

Meanwhile, the anthocyanin MBW complex regulates the expression of ZmFNSII. Both types of flavone synthases

generate apigenin, which defends the plant against UV-B radiation-induced damage .

2.4.3. Flavanone 2-Hydroxylase (ZmF2H1, fns1, EC 1.14.14.162)

In maize, this is the third known enzyme that can produce the flavone backbone of the flavone C-glycosides in the

salmon-colored silks . This enzyme is phylogenetically closer to FNS type II, both being CYP proteins .

Flavanone-2-hydroxylase adds a hydroxyl group into the flavanone C-2, producing the opening of the C-ring and

finally generating the 3-oxo-dihydrochalcone (Figure 5). After this opening, it can be glycosylated in either of the

two positions of the A-ring, closing the C-ring, eliminating water (spontaneous or not), and then generating in vitro a

mixture of C-6 or C-8 glycosylated flavones .

Gene Name Locus Enzyme/Protein Name EC Reference

fnsi1 (ZmFNSI1)
fnsi2 (ZmFNSI2)

1S
1S

Flavone synthase I 1.14.20.5

fnsii1 (ZmFNSII1) 10L Flavone synthase II 1.14.19.76

fns1 (ZmF2H1) 9L Flavanone 2-hydroxylase 1.14.14.162

cgt1 (ZmCGT) 6L
UDP-glucose:2-hydroxyflavanone C-

glucosyltransferase
2.4.1.360

sm2 (UGT91L1) 2L flavonol-3-O-glucoside L-rhamnosyltransferase 2.4.1.159

sm1 (ZmRHS1) 6L Glucose-4,6 dehydratase 4.2.1.76

[75]

[2]

[76]

[77]

[78]

[33]

[19] [20]

[2][77]

2+

[2]

[79]

[2]

[76] [77][80]

[77]



Structural Protein Genes of the Maize Flavonoid Pathway | Encyclopedia.pub

https://encyclopedia.pub/entry/26520 12/20

Figure 5.  Biosynthetic genes of flavone C-glycosides. The flavanones naringenin and eriodictyol are the initial

substrates for the other flavonoid subgroups. There are two possible ways to generate C-glycosyl flavones,

indirectly or directly, from any flavanone. The indirect pathway begins through flavanone-2-hydroxylase

(ZmF2H,  fnsii1, EC 1.14.14.162) opening the C-ring, producing a 3-oxo-dihydrochalcone. Then, UDP C-glycosyl

transferase (ZmCGT, cgt1, EC 2.4.1.360) generates a glycosidic bond in the A-ring. Then, there is a dehydration

reaction (spontaneous or enzymatic) that produces the C6-flavone glycoside. The direct pathway firstly involves

flavone synthase I (ZmFNSII-2, fnsii2, EC 1.14.20.5) and flavone synthase II (ZmFNSII-1,  fnsi2, EC 1.14.19.76)

producing the same reaction by the addition of a double bond between C2 and C3 in the flavanone. Then, a

flavone functions as a substrate for the UDP C-glycosyl transferase (ZmCGT, cgt1, EC 2.4.1.360). The enzymatic
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action of UDP-rhamnosyl transferase (ZmCGT,  sm2, EC 2.4.1.159) and glucose 4,6 dehydratase (sm1, EC

4.2.1.76) produces either apimaysin or maysin. References: .

2.4.4. UDP-Glucose:2-Hydroxyflavanone C-Glucosyltransferase (ZmCGT, cgt1, EC 2.4.1.360)

UDP-glucose:2-hydroxyflavanone C-glucosyltransferase generates a glycosidic bond in the A-ring from the C-1 of

the glucose to the C-6 in the C-glycosyl flavones (Figure 5) . In vitro and in vivo experimental evidence has

demonstrated that the ZmCGT enzyme has a bifunctional capacity to form glycosidic bonds with C or O atoms. On

the contrary, there is only in vitro evidence for C-8 flavone glycosides . The likely reason for that is the possibility

of an enzyme that only selects C-6 glycosylated 2-hydroxyflavanone for dehydration into C-6 glycosyl flavones .

2.4.5. UDP-Rhamnosyl Transferase (sm2, UGT91L1, EC 2.4.1.159)

The UDP-rhamnosyl transferase enzyme forms the glycosidic bond between the glucose C-2 and the rhamnose C-

1 (Figure 5) . Functional alleles confer a characteristic salmon color to the silks due to the accumulation of

maysin/apimaysin in the silks. This is due to p1 upregulating sm2 and is expressed principally in silks  but also in

non-vegetative tissues such as pollen, tassels, and seeds .

2.4.6. Glucose-4,6 Dehydratase (ZmRHS1, sm1, EC 4.2.1.76)

The biosynthesis of C-flavones glycosides in maize ends with a modification to the glucose structure of the

rhamnosylisoorientin (or rhamnosylisovitexin) to produce maysin/apimaysin (Figure 5) . These metabolites give

the ear of maize the ability to deter the herbivore Helicoverpa zea, commonly known as corn earworm . This

locus was found to be responsible for producing the last step in the maize flavone pathway and found to be a

putative UDP-rhamnose synthase (ZmRHS1) . The gene has two putative domains; the first domain is a

UDP-glucose dehydratase, and the second domain corresponds to UDP glucose 4-keto-6-deoxyglucose

epimerase/reductase. The former domain is the exclusive one catalyzing maysin or apimaysin biosynthesis . Its

gene expression pattern in the tissues is similar to the sm1 profile .
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