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Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and

disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all

cerebral ischemia cases. Atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis

risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. Studies

emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this

approach.

atherosclerosis  atherosclerotic risk factors  carotid artery stenosis  carotid plaque

cerebrovascular ischemia  endothelial cells  microRNAs  plaque vulnerability  platelets

vascular smooth muscle cells

1. Introduction

Ischemic stroke (IS) is one of the leading causes of mortality and disability in developed countries .

Atherosclerotic internal carotid artery stenosis (ICAS) accounts for about 20% cases of cerebral ischemia . The

present diagnostic tools for carotid artery assessment are based on imaging studies, including carotid Doppler

ultrasonography, computed tomography, magnetic resonance, or conventional invasive angiography with a use of

intravascular ultrasound (IVUS), and optical coherence tomography (OCT) . They display the degree of ICAS,

as well as carotid plaque morphology .

The current guidelines position carotid endarterectomy (CEA) and carotid artery stenting (CS) as the established

treatment methods for ICAS . In addition to invasive treatment, the optimal medical approach, including

cardiovascular risk factor-control, as well as pharmacotherapy (i.e., antiplatelet and antidiabetic agents, lipid and

blood pressure lowering medication), should be introduced in order to reduce IS risk . The optimal timing for the

intervention on carotid artery is controversial . According to guidelines, CEA or CS is recommended in

recently symptomatic ICAS with stenosis severity above 50% lumen reduction , whereas the intervention on

asymptomatic ICAS is recommended in high-grade stenosis, or in carotid plaques exceeding 60% lumen reduction

when features of high-risk plaque for cerebral ischemia are present . As IS can result from a fragmented plaque

debris release with a subsequent embolization of cerebral arteries, plaque rupture followed by local carotid artery

thrombosis, or hypoperfusion of cerebral structures, the mechanism of cerebral ischemia is complex .
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Thus, as evidenced, plaque morphology and structure, in addition to the degree of carotid artery stenosis, play the

pivotal role in the IS risk assessment and decision on the intervention .

The serious drawback of the aforementioned imaging tools is that they do not allow for the assessment of early

stages of atherosclerosis, i.e., those that precede intima-media complex thickening and early fatty lesions

incidences . Unfortunately, current guidelines miss laboratory biomarkers which could predict the incidence of IS

and thus target the high-risk group of patients with preemptive treatment, whereas early intervention upon the

initiation of atherosclerosis seems very attractive . Data show the important roles of pro-atherothrombotic and

pro-inflammatory biomarkers, including cytokines (IL-1β, IL-6, TNFα), platelets, and macrophages activity .

Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal

role in this approach . miRNAs are small, non-coding RNA nucleotides, having a length that is typically between

18 and 27 nucleotides that regulate post-transcriptional gene expression, by binding to the 3′- (more often), or to 5′-

untranslated regions of mRNA, or exons . The role of the miRNA has already been confirmed in the broad range

of both physiological and pathological processes . They are responsible for target gene expression regulation

after the transcription process, either by inhibiting the translation or mRNA degradation . The diagnostic and

prognostic role of circulating miRNAs in ICAS leading to IS has been studied, however the conclusions remain

inconsistent.

2. From Fatty Streaks and Foam Cells to Mature Plaque

Plaque formation initiates from stages that are not detectable by imaging tools . First stages include endothelium

dysfunction, accompanied by inflammation and modified low-density lipoprotein (LDL) retention in the intimal layer

of the intima-media complex . In the endothelium equilibrium, a great number of miRNAs are involved, including

protective ones . Their protective effect is achieved through many signaling pathways, however their major role

is to prevent unfavorable lipid metabolism and reduce inflammation . One of these miRNAs, miR-126, protects

endothelial cells (ECs) through the suppression of NOTCH-1 inhibitor and activation of the vascular endothelial

growth factor (VEGF) signaling (Table 1) . At the beginning, miR-155 induces the downregulation of mitogen-

activated protein 3 kinase 10 (MAP3K10), endothelin-1 (ET-1), and angiotensin II (ANG II) type I receptor .

The downregulation of ET-1 is important in many cardiovascular settings, as elevated levels of ET-1 are

independently associated with increased cardiovascular mortality . miR-146a and miR-125a decrease the

lipid uptake in macrophages . miR-146a also inhibits endothelial activation by increasing nitric oxide synthase

(eNOS) expression . miR-125 modulates extracellular vascular endothelial growth factor (VEGF) by

manipulating macrophage soluble VEGF receptor-1 (sVEGFR1) production. This mechanism has a therapeutic

potential in many diseases . miR-206 and miR-223 regulate cholesterol synthesis through the reverse

cholesterol transport from macrophages to the liver for excretion, attenuates pro-inflammatory cytokine production,

and has a role in platelet activation .

Table 1. Critical miRNAs participating in atherosclerotic carotid artery lesions development: from fatty streaks to

mature plaque: a therapeutic approach.
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Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

Initiation and early
atherosclerosis

         

‘Brakes’ of
atherosclerosis

         

Promotes ECs
proliferation and
repair, protects

ECs

miR-
126-
5p

suppression of the
Notch1 inhibitor

Dlk1

At non-predilection sites,
high miR-126-5p levels in
ECs confer a proliferative
reserve that compensates

for the antiproliferative
effects of hyperlipidemia

T, injection of miR-
126-5p rescued ECs

proliferation at
predilection sites

and limited
atherosclerosis

Decreases
atherosclerosis

progression

miR-
155

downregulation of
MAP3K10

downregulation of
ET-1 and ANG II
type I receptor

Down-modulates
inflammatory cytokine

production

T, the miR-155
mimic decreased IL-
6, MMP-9 and TNF-

α secretions of
oxLDL-induced
macrophages

Decreases lipid
uptake in

macrophages,
inhibits endothelial

activation

miR-
146a

regulates TLR4,
increases eNOS

expression

Inhibits ox-LDL and
inflammatory response

(decreases IL-6, -8, MMP-
9)

Overexpression may
be useful

Macrophage
polarization

MiR-
125a

downregulation of
sVEGFR1

Decreases lipid uptake in
macrophages, modulates

extracellular VEGF by
manipulating sVEGFR1

T, miR-125a-5p
inhibition reduces
VEGF through the

increased sVEGFR1

Increase reverse
cholesterol

transport from
macrophages to

the liver for
excretion

miR-
206
miR-
223

promote efflux
promote efflux

crucial for the prevention
of lipid accumulation and

atherosclerosis

T, these miRs can
be efficiently
delivered to

macrophages via
chitosan

nanoparticles

Prevents ECs
senescence

miR-
let-
7g

Stimulates anti-
aging gene SIRT1,

and IGF 1,
inhibits expression

of LOX-1

exert anti-aging effects on
ECs

T, antagonizing
endogenous

let-7 has induced
cell

proliferation

Prevents ECs
senescence

miR-
143

targets a network
of transcription

factors, including
KLF4, myocardin,

and Elk-1

promotes differentiation
and repress proliferation

of VSMCs

microvesicles
containing miR-143
injected into mice
could reduce the

formation of
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Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

atherosclerotic
plaques

Suppresses
atherosclerotic

plaque formation

miR-
520

targets RelA/p65
regulates VSMCs

decreasing migration and
proliferation

miR-520c-3p agomir
decreased

atherosclerotic
plaque size

High expression is
needed to maintain

a contractile
phenotype of

VSMCs

miR-
22

multiple target
genes

induce the phenotypic
switch from synthetic to

contractile

T, the stent with the
miR-22 coating

showed significant
capability to inhibit
in-stent restenosis

Promotors of
atherosclerosis

         

Increases
endothelial

inflammation

miR-
92a

regulation of KLF2
markedly enhanced by
hypercholesterolemia

T, inhibition of miR-
92a reduces
endothelial

inflammation and
atheroma plaque

size

Vascular
senescence,

vascular
calcifications
Altered lipid
metabolism
Increases

inflammatory
cytokines secretion

of macrophages
M1

miR-
34a

inhibition of SIRT1
and AXL receptor
tyrosine kinase

targets cholesterol
transporters:
ABCA1 and

ABCG1
through the

nuclear hormone
LXRα

aggravates and
accelerates vascular

senescence
increase the binding

capacity
of oxLDL to macrophages
stimulate pro-inflammatory
cytokines (TNF-α, IL-1β,
IL-6, IL-12, IL-23), and

chemokines (CCL5,
CCL8, CXCL2, CXCL4)

T, inhibition with
antago-miR-34a

Promotes
cholesterol

accumulation in
macrophages,

decreases reverse
cholesterol
transport

miR-
33a

Targets hepatic
ABCA1

inhibit efflux, increases
macrophages ox-LDL

uptake, foam cells
accumulation

T, inhibition of miR-
33a facilitates

atherosclerosis
regression

Promotes
atherosclerosis

miR-
155

repressing Bcl6 in
macrophages,

suppress eNOS

increases pro-
inflammatory NF-κB

signaling, down-regulates
the expression of eNOS

and production of NO

T, inhibition of miR-
155 increased

eNOS expression
and NO production
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Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

Increases
apoptosis in ECs

miR-
17-
5p

repression of
ABCA1 expression

through directly
binding to its 3′-

UTR

rate of apoptosis in ECs

T, inhibition of miR-
17 suppresses

apoptosis, hence
decrease infarct size
area, and improves
microcirculation of
the heart tissue,
decreasing heart
failure symptoms

Promotion of
monocyte
adhesion,

proinflammatory
Lipid metabolism

miR-
21

targets PPAR α
targets TLR4 and

NF-κB

enhances the expression
of VCAM-1 and MCP-1

and the adhesion of
monocytes to ECs
LPS-induced lipid
accumulation and

inflammatory response
in macrophages

Overexpression of
miR-21 up-regulated

ATP-1 activation,
which was

attenuated by
exogenous

expression of
PPARα

overexpression of
miR-21 significantly

decreased the
secretion of IL-6 and

increased IL-10
levels

Induces ECs
apoptosis,

development of
atherosclerosis

miR-
142-
3p

up-regulation of
Rictor and the

Akt/eNOS

atherosclerosis-associated
ECs apoptosis

T, the antagomir-
142-3p attenuated

endothelial
apoptosis and
retarded the

atherosclerosis
progression in the
aorta of ApoE-/-

mice

Increase pro-
inflammatory

cytokines

miR-
342-
5p

targets Akt1

induces proinflammatory
mediators such as NOS2
and IL-6 in macrophages

via the upregulation of
miR-155

T, the miR-342-5p
antagomir

upregulated Akt1
expression and
suppressed the

expression of miR-
155 and NOS2

Mature plaques          

Marker of response
to clopidogrel,
targets P2Y12

receptor

miR-
223-
3p

possible P2Y12
site targeting

on-clopidogrel platelet
reactivity

decreased miR-223
expression

was a predictor of
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Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

low responders
to clopidogrel

Plaque stabilization
miR-
145

targets KLF4,5

VSMCs contractility,
increase fibrous cap area,
reduce the necrotic core

area

T, delivery of miR-
145 may limit

atherosclerotic
plaque growth, and
restore contractile
levels in VSMCs

Macrophage
polarization

miR-
455

targets SOCS3
decreased expression

leads to ECs injury
induced by ox-LDL

T, overexpression
with miR-455

inhibits apoptosis,
migration of VSMCs,
and lowers ox-LDL

Marker of platelet
activation, targets
COX-1 receptor

through the
regulation of TXS

miR-
34b-
3p

targets TBXAS1

miR-34b-3p may regulate
the platelet response by

suppressing TBXAS1
expression and
megakaryocyte

proliferation

T, miR-34b-3p may
facilitate the

antiplatelet efficiency
of aspirin

through inhibiting
TBXAS1

Responsive to
antiplatelet therapy

miR-
126-
3p

affects ADAM9
and P2Y12

receptor
expression

Increases platelets
aggregation

T, antagomiR
against miR-126-3p

reduces platelets
aggregation

Decreases size of
atherosclerotic

lesions, alleviate
ox-LDL-induced

ECs injury,
angiogenesis and
vascular integrity

miR-
126-
3p

activation of VEGF
and NF-kB
signaling

decreased expression in
advanced carotid plaques
with high discriminating

value (AUC: 0.998)

patients with severe
carotid stenosis

demonstrated down-
regulation of miR-

126

Plaque stabilization
miR-
210

targets the APC
gene, affecting

Wnt signaling and
regulating VSMCs

survival

enhances fibrous plaque
stability in mature plaques

T, miR-210 mimics
prevent carotid
plaque rupture;

modulating miR-210
improved

fibrous cap stability

Promotes
atherosclerosis

growth

miR-
103-
3p

targets KLF4
stimulates inflammatory
activation, and uptake of
oxidized LDL cholesterol

T, reduction in miR-
103 levels results
in the reduction of

atherosclerosis
and endothelial

inflammation
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Some miRs, such as miR-let-7g, also modulate ECs senescence by regulating anti-aging gene sirtuin 1 (SIRT1)

and the insulin growth factor (IGF) 1 pathway . In line with this, miR-143 is downregulated with advancing age

and protects against vascular senescence . On the contrary, miR-92a released from ECs stimulates

macrophages to the pro-inflammatory responses and LDL uptake, which enhance atherosclerotic progression .

In mice, inhibition of miR-92a reduces endothelial inflammation and atheroma plaque size through the regulation of

Kruppel-like factor 2 (KLF2) . Similarly, miR-34a aggravates and accelerates vascular senescence through the

downregulation of SIRT1 and AXL Receptor Tyrosine Kinase , whereas miR-34a inhibition by anti-miR-34a

Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

Decreases ECs
regeneration and

repair

miR-
652-
3p

suppression of the
endothelial repair

gene Ccnd2

inhibits ECs regeneration
and repair following
mechanical injury

downregulates
Ccnd2 in endothelial
cells, lowering cell

proliferation

Plaque stabilization
miR-
223

targets TLR4

reduces foam cell
formation, and production

of pro-inflammatory
cytokines

Overexpression
decreases lipids
deposition and
inflammation

Plaque instability
miR-
92a-
3p

SIRT1, H O -
induced changes

in VSMCs

increased apoptosis,
oxidative stress, CIMT,
and pro-inflammatory

MMP-9

miR-92a
overexpression

regulates
the expression

levels of MMP-9
and TIMP3

Plaque instability
miR-
133a

Matrix
metallopeptidase 9

inhibits the proliferation of
VSMCs and induces

apoptosis

the miR-133a-3p
mimic inhibited

proliferation and
promoted VSMC cell

apoptosis

Promotes
endothelial
migration

miR-
486

targets HAT1

induces apoptosis and
oxidative stress, pro-

atherosclerotic, affects
endothelial migratory

activity

Inhibition of miR-486
limits foam

cell formation by
increasing

cholesterol efflux

Increases pro-
inflammatory

cytokines

miR-
331

down-regulation
of SOCS1

a pro-inflammatory
response in

atherosclerotic plaques

miR-331
suppression causes

up-regulation of
SOCS1 and anti-

inflammatory
mechanism in

atherosclerosis

Plaque stabilization
miR-
100

down-regulation of
E-selectin and

VCAM-1

miR-100 restrains
vascular inflammation in

vitro and in vivo by
suppressing endothelial

adhesion molecule
expression and thereby
attenuating leukocyte–
endothelial interaction

Inhibition of miR-100
Stimulates

Atherogenesis in
Mice

Plaque instability miR-
105

transported via
HDL

overexpression of miR-
105 in patients with

HDL can deliver
miRNA-105 to
recipient cells,
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ABCA1: ATP-binding cassette subfamily A member 1; ABCG1: ATP-binding cassette subfamily G member 1; Akt:

protein kinase B; AMPK: Adenosine monophosphate–activated protein kinase; ANG II: angiotensin II;

ANGTPL/LPL: Angiopoietin/lipoprotein lipase; Ccnd2: Cyclin D2; CIMT: carotid intima-media thickness; Dlk1: delta-

like 1 homolog; eNOS: nitric oxide synthase; ECs: endothelial cells; ET-1: Endothelin 1; H2O2: hydrogen peroxide;

HAT1: Histone acetyl-transferase 1; HMG-box transcription factor 1; hs-CRP: high-sensitivity C-Reactive Protein;

IGF: insulin growth factor; KLF: Kruppel-like factor; LXRα: Liver X receptor α; LPS: lipopolysaccharide; MAP3K10:

mitogen-activated protein 3 kinase 10; MCP-1; monocyte chemotactic protein-1; MMP: metalloproteinase protein;

n/d: no data available; NF-κB: nuclear factor-κB; P4HA1: prolyl 4-hydroxylase subunit alpha-1; PPARα: peroxisome

proliferators-activated receptor-α, RelA/p65: REL-associated protein involved in NF-κB heterodimer formation p65

subunit; sVEGFR1: soluble VEGF receptor-1; SIRT1: sirtuin 1; SOCS1: suppressor of cytokine signaling 1; T:

therapeutic approach; TBXAS1: thromboxane synthase thromboxane A synthase 1; TLR4: toll-like receptor 4; TNF-

reduced vascular inflammation, senescence, and apoptosis . In macrophages, ox-LDL increases miR-34a

levels that target the cholesterol transporters’ ATP-binding cassette subfamily A member 1 (ABCA1), and ATP-

binding cassette subfamily G member 1 (ABCG1) . This alters lipid metabolism, while miR-34a enhanced

secretion of inflammatory cytokines promotes inflammation facilitating atherosclerotic plaque formation . ECs

dysregulation is enhanced by the lipid accumulation due to disturbed reverse cholesterol transport of cholesterol

efflux from macrophages to the liver . This results in lipid accumulation in macrophages with formation of foam

cells . miR-206 and miR-233 promote cholesterol efflux to the liver, whereas miR-33a inhibits reverse transport

(Table 1) . miR-33a/b have been shown to act as post-transcriptional regulators of a lipid metabolism,

and their pharmacological inhibition diminished atherosclerosis by raising plasma high-density lipoprotein levels

. Nguyen et al. demonstrated that chitosan nanoparticles containing miRs can be delivered to macrophages .

In mice, macrophages treated with miR-33-loaded nanoparticles showed decreased reverse cholesterol transport

. In contrast, when efflux-promoting miRs were delivered the efflux was improved .

miR-10a, miR-31, and miR-17-3p regulate inflammation modulating the expression of adhesion molecules in ECs,

while miR-155 and miR-331 through the down-regulation of the anti-inflammatory suppressor of cytokine signaling

1 (SOCS1) protein . During atherosclerosis development, miR-155 begins to stimulate

atherosclerosis progression through repressing Bcl6 in macrophages, suppressing the expression of eNOS, and

increasing pro-inflammatory NF-κB signaling .

There is a continuous crosstalk between ECs and vascular smooth muscle cells (VSMCs) . ECs-derived

miRNAs, like miR-126, miR-92a exert action on VSMCs, resulting in the VSMCs-enriched miRNAs release, that

often have reciprocal unfavorable effects on ECs . On atherosclerosis initiation, VSCMs migrates from the

medial arterial wall into the intimal space, resulting in promotion of plaque formation . VSCMs migration and

proliferation is one of key stages in early atherosclerosis. miR-520 regulates VSMCs function by targeting

RelA/p65. This way, decreasing cells migration and proliferation exerts a protective role in atherosclerosis .

Moreover, miR-520c-3p mimics may act as a promising therapeutic strategy for atherosclerosis . The VSMCs

equilibrium plays a great role in the inhibition of atherosclerosis. The maintenance of contractile phenotype

prevents atherosclerosis . Of the miRs capable of the contractile function recovery in VSMCs,

miR-22 and miR143/145 are probably the most investigated ones, and are potential therapeutic targets 

. Intravenous delivery of miR-143/145 extracellular vesicles blocked atherosclerotic lesion progression and

exerted protective effects on intima-media complex , while miR-22 restores contractile phenotype of VSMCs

without a negative impact on EC’s function . In addition, miR-22 inhibits intima-media hyperplasia, which is

important both for inhibition of atherosclerosis plaque growth, as well as in the restenosis following stent

implantation .

Some miRNAs were investigated in the context of carotid plaques, including miR-520, miR-455, and miR-105.

Some are common for many arterial territories, including miR-21, miR-27, miR-100, and miR-122 (Table 1) 

.

Critical Stages in
Atherosclerosis miRNA Mechanism Effect of miRNA Action

Therapeutic
Approach (HUVEC
or Animal Studies)

Ref.

familial
hypercholesterolemia

contributing to
altered gene
expression

Plaque instability
miR-
155

Targets the
transcription factor

HBP1

Increase macrophages,
foam cells content, and
necrotic core in plaques

T, inhibition of miR-
155 reduced
necrotic core,
apoptosis, and

prevented
progression of
atherosclerosis

Plaque instability
miR-
124

Targets P4HA1
Inhibits collagen synthesis
in atherosclerotic plaques

Overexpression of
miR-124 increased
the expression of
anti-inflammatory

cytokines by binding
p38 signaling

pathway

Plaque instability
miR-
134

ANGTPL4/LPL

associated with chronic
inflammation (hs-CRP and
TNF-α), cholesterol mass,
and plaque vulnerability

features on
ultrasonography

T, lower LPL activity
with inhibitors of

miR-134

Lipometabolism
miR-
122

inhibits AMPK and
SIRT1

correlated with TC, TG,
and LDL-C levels

serum level of miR-
122

correlated with
atherosclerosis

severity
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α: tumor necrosis factor alpha; VCAM-1: vascular cell adhesion molecule-1; VSMC: vascular smooth muscle cells;

VEGF: vascular endothelial growth factor.

When the anti-atherothrombotic miRNAs are overbalanced by the pro-atherothrombotic miRNAs, researchers can

steadily observe carotid intima-media complex thickening (CIMT), followed by the occurrence of focal non-calcified

lesions . Then, a formation of mature plaques composed of lipid and necrotic cores, fibrotic matrix, and

calcifications are observed, accompanied by inflammation and angiogenesis. The first caution that should attract

the attention of clinicians is CIMT . CIMT, in ranges above the 75th percentile for age and gender, can

even be observed in teenagers and young adults, particularly if accompanied by atherosclerosis risk factors, such

as diabetes or familial hypercholesterolemia . This parameter is well correlated with risk of cardiovascular

events, such as cardiovascular death (CVD), IS, and myocardial infarction (MI) . It has also a good

predictive value for a presence of significant atherosclerosis in the other territories, e.g., coronary arteries .

Several miRNAs are associated with CIMT, including miR-22, miR-29a, miR-143/145, and miR-92a .

With increasing CIMT, atherosclerotic process accelerates. There is a huge role for metalloproteinases (MMP),

such as MMP-2 and MMP-9, as they are associated with a promotion of plaque growth and CIMT increase, rather

than a decrease in VSMCs contractility . Interestingly, in advanced carotid plaques, migration and proliferation

of VSMCs is beneficial, promoting the stability of the fibrous cap and prevention of plaque rupture . This

process in stimulated by the expression of miR-145 and miR-210 that drive the increase in plaque collagen content

and a fibrous cap area, while at the same time reducing the necrotic core area .

In contrast, plaque instability is associated with increasing levels of MMP-2, MMP-9, the increasing size of plaque

and the lipid and necrotic core, particularly when abundant in lipids . MMP-9 is particularly important

as it predicts future adverse cardiovascular events . It was observed that MMP-9 is regulated by

several miRNAs, including miR-92a, which is a predictor of plaque instability . However, miR-92a is not

necessarily always negative . The upregulation of MMP-9 and the downregulation of TIMP3 in H O -

induced VSMCs were observed to be reversed by mimicking miR-92a in addition to SIRT1 and siRNA, which may

prevent a phenotypic change of VSMCs . Other miRNAs associated with serum concentration of MMP-9

include miR-100, miR-155, miR-133a, and miR-223 . These miRNAs are also linked to plaque instability

and might be used as biomarkers of plaque conversion from a stable state into a vulnerable state 

.

Thus, it is of the utmost importance to identify carotid plaques that are likely to undergo transformation from the

stable ones to vulnerable ones, prone to rupture and cause symptoms of cerebral ischemia. The research is

ongoing for the identification of specific microRNAs that could prevent IS through the manipulation of their

expression levels.
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