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The development of autonomous vehicles (AVs) is becoming increasingly important as the need for reliable and

safe transportation grows. However, in order to achieve level 5 autonomy, it is crucial that such AVs can navigate

through complex and unconventional scenarios. It has been observed that currently deployed AVs, like human

drivers, struggle the most in cases of adverse weather conditions, unsignalized intersections, crosswalks,

roundabouts, and near-accident scenarios.
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1. Introduction

Several organizations, both in academia and industry, are rigorously working towards developing autonomous

vehicles (AVs) which have the potential to save thousands of lives every year and create significant societal

benefits . According to a report by the World Health Organization (WHO), approximately 1.35 million road traffic

deaths occur every year with an additional 20–50 million people suffering nonfatal injuries . A study carried out by

the National Highway Traffic Safety Administration (NHTSA) in the United States concluded that 94% of accidents

occurred due to human errors while only 2% were caused by vehicle failures . Hence, encouragingly, the

increased adoption of AVs will likely reduce vehicle accidents and hence decrease the fatalities due to road traffic.

If their widespread deployment is successful, the projected annual social benefits of AVs—which include reducing

traffic congestion and the number of accidents on the road, consuming less energy, and boosting productivity as a

result of reallocating driving time—will reach nearly $800 billion by 2050 .

2. Adverse Weather Conditions

Continuously changing weather phenomena have several negative impacts on traffic and transportation. On

average, global precipitation occurs 11% of the time although only 8% occurs on land . Based on the study

conducted in  which used information from fatal crashes spanning the US over a 6-year period, the authors

concluded that the risk of fatal crashes increased by 34% during active precipitation while the risk was the highest

during the winter months. In terms of their classification of heavy precipitation, they found that the risk increased by

over 140%. Such adverse weather phenomena include rain, snow, fog, wind, and extreme heat and cold. Since

such weather conditions affect the perception stack of autonomous vehicles, most studies such as  are

concerned with improving the sensor fusion algorithms in which data from multiple sensors, for instance, radar,
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LiDAR, RGB, event-based cameras, etc., are fused to get the most accurate localization and identification of the

surrounding objects. Therefore, most surveys on adverse weather conditions  focus on improving the

shortcomings in the perception stack and the relevant hardware, discussing the various sensors’ weaknesses.

Although identifying the weather condition is crucial and hence there is an abundance of research in the perception

domain, it is also important that AV controllers take into consideration these changes since they affect the friction

coefficient of the road. These changes negatively afflict the ego vehicle directly because they create abnormalities

in the vehicle states. These changes also affect the surrounding vehicle’s behavior and hence the environment

dynamics itself. According to , for braking distances of vehicles traveling at 80 km/h, the friction coefficient for

dry roads is 0.7 while that of rainy, snowy, and icy roads is 0.4, 0.28, and 0.18, respectively. These data along with

the collision data demonstrate that the behavior of AVs need to adapt to these changes in road conditions.

A motion planning algorithm was developed in  that took into consideration vehicles with a limited receptive field,

which usually occurs during adverse weather conditions. The algorithm used a probabilistic model to estimate the

likelihood of obstacles being present in the unobserved areas of the environment, incorporating that information

into the motion planning algorithm for generating safe and efficient trajectories. The planner itself was based on

finite state machines (FSM). The planner was tested in a closed-loop simulation environment developed by the

authors and deployed on their automated vehicle, BERTHAONE . It was shown that the planner imitated human

behavior and drove with reduced speeds in shorter sensor ranges, preparing to yield to approaching not yet

observable vehicles, while being aware of any erratic behaviors in other vehicles. However, they only tested their

algorithm in an environment consisting of other vehicles and made several assumptions, such as all other vehicles

obeyed the speed limit and the false negative object detection rate was zero for a specific range amongst others.

Additionally, due to the nature of the FSM algorithm, complex maneuvers such as lane changes were not allowed

since that would have caused the required FSM logic to exponentially grow. In , the authors developed an

adaptive path planning model for collision avoidance and lane change maneuvers for curved sections of highways.

The lane change model took into account the curvature of the road, the road friction coefficient, and the presence

of other vehicles. They utilized a Gaussian distribution to evaluate the impact of rain on vehicle lateral dynamics. To

track and execute the control signal, they used a model predictive control (MPC) approach which incorporated the

effects of rain and ensured the generated trajectory was followed. The proposed algorithm was tested in a self-

developed simulation environment and shown to successfully change lanes in rain. However, this algorithm was

specifically tested on highways, only at curved sections, and it only outputted the lateral control of the vehicle.

In , a linear MPC-based stability control system was proposed for low-friction roads. The authors developed a

controller for both the longitudinal and lateral controls and demonstrated that their controller worked well even

without knowing the value of the friction coefficient. They also developed an instability detection algorithm which

was used to determine the vehicle stability threshold while estimating the friction coefficient. The algorithm was

tested in a Carsim/Matlab cosimulation environment and compared with a baseline MPC for only tracking the

desired path and speeds. Similarly, in , the authors proposed a steering control tracking strategy for roads with

different tire–road friction coefficients. To estimate the friction coefficient, they developed a long short-term memory

(LSTM) network which consisted of four LSTM layers and two fully connected (FC) layers. They evaluated their

algorithm in a Carsim-Simulink simulation environment and demonstrated that the tracking accuracy improved by
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37.7% with an adaptive tire cornering stiffness estimation strategy. However, since they were only focusing on the

tracking, the algorithm only outputted the steering angle. In , the effects of sudden snowstorm conditions on AV

dynamics were discussed, along with the controller performance on the same map. An MPC controller was used

for trajectory tracking with the maximum speed set to 35 km/h. The authors showed that the average positioning

error using the mean squared error (MSE) formulation in snow was 22% higher than in nonsnow conditions,

particularly due to wheel slippage. As a result, the vehicle was still able to navigate autonomously. They concluded

that the robustness of the positioning strategy was key to the performance of the motion controller, indicating the

importance of a robust positioning strategy. However, that study was only limited to smaller-sized vehicles since

they were using a heavy quadricycle, the Renault Twizy, and further analysis of vehicle dynamics was needed to

be performed for larger-size vehicle applications, such as autonomous buses and trucks.

In , an adaptive online tuning strategy for lateral controllers was introduced, particularly the Stanley controller, to

improve the performance of lateral trajectory tracking systems. This is shown in Figure 1. The authors used a

modified version of the Stanley control law, originally used in , which essentially incorporated the vehicle

kinematics as well as partial inclusions of the vehicle dynamics effects (tires and steering wheel). They used a

fuzzy inference algorithm to update the controller gains online to keep the cross-tracking errors (CTEs) as low as

possible. The updated gains were the CTE and heading gains of the Stanley controller.

Figure 1. Motion control framework used in .

Furthermore, to replicate driverlike behavior, they proposed a set of rules for adjusting the gains based on a

heuristic understanding of how the controller gains affected the steering angle. Experiments were conducted by

randomly initializing the controller gains and monitoring the performance of an adaptation strategy by using CTEs

as the performance metric. Experiments were carried out in a confined environment and the desired trajectory of

the vehicle was recorded and then used for testing. However, since there were no obstacles, no local path planning

was performed. Additionally, the average speed of the vehicle was 15 km/h which did not truly represent urban

driving. There were also no experiments performed on slippery roads which would change the coefficient of friction.
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Compared to traditional lane-keeping systems (LKS), which are typically based on a camera, in , an LKS was

presented using a global navigation satellite system (GNSS) along with high-definition (HD) maps to overcome the

effects of the surrounding environment, including weather and lighting. They also developed an MPC-based

controller to calculate the steering angle based on cubic approximations of the position of the vehicle using the

GNSS and HD map outputs. In a previous study , they had used a PID controller but found that there was

significant oscillation in the steering signal. To assess the proposed technique, they used a simulation environment

developed in Matlab/Simulink with conditions suitable for highway driving. They also verified the controller

performance using a Mitsubishi Outlander with a real-time kinematic OxtS GNSS RT3003. Although the controller

model was able to track the steering angle, they did not evaluate it in various weather conditions. Additionally, it

was seen that the time delay of the GNSS severely affected the performance and was a crucial factor for the MPC

controller.
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