
Robotic Applications in Maintenance, Repair, and Overhaul Hangar | Encyclopedia.pub

https://encyclopedia.pub/entry/55876 1/12

Robotic Applications in Maintenance, Repair,
and Overhaul Hangar
Subjects: Robotics

Contributor: Ndidiamaka Adiuku , Nicolas P. Avdelidis , Gilbert Tang , Angelos Plastropoulos

The aerospace industry has continually evolved to guarantee the safety and reliability of aircraft to make air travel

one of the safest and most reliable means of transportation. Mobile robots encompass comprehensive system

structures that work together through perception, detection, motion planning, and control. The subject of

autonomous robot navigation entails mapping, localisation, obstacle detection, avoidance, and achieving an

optimal path from a starting point to a predefined target location efficiently.

robotics  MRO hangar  robot navigation

1. Introduction

In recent years, the aviation sector has made significant strides in the periodic inspection and maintenance of

aircraft, aiming to keep pace with the increasing global air traffic demand. This focus is driven by a commitment to

safety and the goal to reduce operational costs, which currently represent 10–15% of airlines’ operational costs

and are projected to rise from $67.6 billion in 2016 to $100.6 billion in 2026 . This has heightened interest in

automated visual aircraft inspection with the aim of reducing conventional assessment strategies conducted by

human operators, which are often time-intensive and susceptible to transcriptional error, especially when accessing

complex and hazardous areas within the aircraft . To overcome these limitations and improve the effectiveness of

the aircraft visual inspection process, the aerospace industry is actively exploring the integration of unmanned

robotic systems, including mobile robots and drones. The fundamental focus lies on the capacity of robots to

perceive and navigate through their surroundings, ensuring the avoidance of collisions with obstacles. This

necessitates the understanding of dynamic and unstructured environments, like aircraft hangars, where accurate

and real-time detection and avoidance of obstacles have paramount significance . The hangar environment is

unpredictably complex, with diverse object irregularities, including light variations that contribute to environmental

uncertainties and navigational difficulties. Consequently, there is a need to equip autonomous vehicles with reliable

obstacle detection and avoidance mechanisms to improve their ability to safely navigate the surrounding

environment.

Traditionally, mobile robots have utilised technologies such as Radar and GPS, along with various other sensors

for navigation purposes. However, in comparison to these sensors, RGBD (red, green, blue—depth) cameras and

LiDAR (light detection and ranging) systems, although more expensive, offer significantly broader range and higher

resolution. These advanced sensors enable the capture of a more detailed representation of the environment.

RGBD cameras provide a rich visual and depth perception, while LiDAR systems offer more precise environmental
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mapping, making them superior for complex navigation tasks . The data collected by these sensors undergo

algorithmic processing to create comprehensive models of the environments that enable the implementation of

obstacle avoidance strategies. The use of mobile robots to perceive, detect, navigate through environments, and

enhance inspection processes has gained considerable attention in this field . However, the principal challenge

extensively investigated is accomplishing a navigational task that ensures an optimal, collision-free, and shortest

path to the designated target. This challenge is amplified by the inherently complex and unstructured nature of the

changing environments, which complicates the real-time decision-making process and impacts the robot’s

autonomy. Consequently, the robots struggle to navigate, avoid obstacles, and identify the most suitable path in

changing environments.

2. Robotic Applications in Maintenance, Repair, and
Overhaul Hangar

2.1. MRO Hangar in Aviation

The aerospace industry has continually evolved to guarantee the safety and reliability of aircraft to make air travel

one of the safest and most reliable means of transportation. The traditional approach to aircraft maintenance and

inspection involves semiautomated systems with human control to execute tasks. Sensing and navigation systems

are usually preprogrammed to follow predefined inspection paths and do not adapt to unexpected conditions or

obstacles. These factors are time-consuming and increase the overall operation cost. There is a growing need for

more advanced and automated systems, potentially reducing cost and enhancing safety. The aviation industry has

grasped the integration of robotics to improve the MRO processes of aircraft towards the “Hangar of the Future”

initiative. The MRO hangar represented in a simulation model shown in Figure 1 is a major part of the aviation

sector in which Industry 4.0 (I4.0) technology environments  have gained wide adoption and are instrumental in

improving safety and operational efficiency in the environment. Robotics and artificial intelligence are part of the

key enablers of I4.0, as illustrated in Figure 2. These technologies have been effectively harnessed using

unmanned vehicles, including intelligent ground robots, for autonomous navigation in a busy and changing hangar

environment, particularly for inspection, maintenance, and repair tasks. A comparative description of the intelligent

application of robotics over the conventional method is shown in Table 1. Robots have emerged as a promising

cutting-edge technology, enabling efficient and precise operations in various tasks, including assembly, drilling,

painting, and inspections. Intelligent robots involve the use of machines that are built and programmed to perform a

specific task, combined with artificial intelligence techniques that instil and optimise intelligence through automated,

data-driven learning capabilities. The integration of these technologies has spurred a digitalisation drive within the

sector, promoting the concept of “Hangar of the future”. This is where intelligent robots play major roles by

improving aircraft inspection efficiency and reducing aircraft-on-ground (AOG) time and overall operation cost.
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Figure 1. Simulated Cranfield University MRO hangar.

Figure 2. Industry 4.0 technologies.
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Table 1. Comparing traditional and intelligent robotics applications in MRO hangar.

A typical hangar environment is characterised by highly complex configuration space due to the presence of

unstructured and dynamic objects that vary in shape, size, and colour. Additionally, low-light conditions prevalent in

such environments can impact visibility in certain areas. These factors pose a challenge for robots, as their ability

to navigate from the starting point to the target location is constrained by objects and changing environmental

structures . Mobile robots must proactively engage with their surroundings, interacting with and exploring the

aircraft environment to ensure efficient navigation experiences . In this process, they generate valuable

information using various sensors that facilitate the detection of environmental features, including positions of

obstacles, which are essential for environment modelling and safe navigation to their destinations . Different

machine-learning-based functionalities have been developed, leveraging environmental information for robotic

applications . These have been demonstrated through various robotic platforms, such as the human-like robots

from Boston Dynamics, the Crawling inspection robot by Cranfield University , and others. These robot systems

follow standard robot architecture comprising sensory data acquisition, environmental perception, decision-making

process, and execution of actions. This architecture is embedded within the robot’s hardware framework to

effectively learn the robot’s orientation relative to a set of state space variables for optimal navigation in complex

and dynamic environments.

2.2. Intelligent Robotic in MRO Hangar

Mobile robots encompass comprehensive system structures that work together through perception, detection,

motion planning, and control, as illustrated in Figure 3, to perform a series of navigation tasks. Robotic scientists in

this field have proposed many intelligent technologies integrated to form an Internet of robotic things (IORT) that

can interact with the environment and learn from sensor information or real-time observation without the need for

human intervention . This technology empowers robots to operate more independently and make decisions

based on the information they gather from their environments. Machine learning (ML) is an artificial intelligence

Task Traditional Approach Intelligent Robotics Application

Inspection accuracy
Dependent on programme quality and

human interaction
Enhanced accuracy facilitated by learning

and data analysis

Automation level
Manual–semiautomated with human

oversight
Fully automated with limited human input

Algorithms
Predefined algorithms combined with

basic sensor input
Sensor fusion, advanced navigation

algorithms, and machine learning models

Obstacle detection
and navigation

Basic, simple path planning
algorithms

Using real-time and advanced deep
learning models to enhance path planning

Task performance
Best suited for repetitive and defined

tasks
Able to manage varied and complex tasks

Cost
Higher cost for longer maintenance

time and error management
Lower maintenance engagements and cost
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approach that is at the core of these enabling intelligent technologies with widespread adoption  and has become

an essential component in accomplishing many intelligent tasks in robotics. The ML techniques incorporate sensor

information fusion, object detection , collision avoidance mechanism , pathfinding , path tracking , and

control systems  to solve robot autonomous navigation problems . Diverse arrays of sensors, including laser

scanners, cameras, LiDAR, and others, are leveraged for information gathering, mapping, obstacle detection, as

well as robot positions and velocities. The fusion of information from these multiple sensors has brought a

paradigm shift in the development of more robust and accurate models of robotic systems. The multisensory fusion

augments the capabilities of each individual sensor, thereby enhancing the overall system’s visual perception and

its efficacy in obstacle detection and avoidance under a variety of operational conditions . ML methods have

revolutionised robot navigation, especially in unstructured and complex environments, by offering highly accurate

and robust capabilities  to training models by learning from data to adapt to various types of obstacles they

encounter during navigation.

Figure 3. Structure of robotic intelligence.

2.3. Robotic Navigation

The subject of autonomous robot navigation entails mapping, localisation, obstacle detection, avoidance, and

achieving an optimal path from a starting point to a predefined target location efficiently . The nature of obstacles

encountered can be static or dynamic, depending on the environment structure. Navigation through such an

environment can be challenging due to the reliance on the sensory and real-time capability of analysing the vast

amount of environmental data. Some of the robot navigation problems include the need to accurately perceive,

identify, and respond to the geometry of the environment, the shape of the robot, obstacle types, and obstacle

position using a suitable model. However, improper navigation processes often result in inaccuracies in perception,
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the development of flawed models of the environment, and emergencies of learning complexities, which

significantly limit the robot from achieving its navigational goal. The application of advanced computational

techniques like parallel processing and deep neural network (DNN) algorithms has significantly improved the

navigation experience. In the context of a neural-network-enabled approach for obstacle avoidance and path

planning, the architecture encompasses several interconnected modules, each contributing uniquely to overall

system efficiency. As illustrated in Figure 4, the modules collaboratively contribute to achieving optimal path

planning, adapting to changing scenarios, and are able to minimise obstacle collisions in complex environments.

Figure 4. Learning-based path planning framework.

For many applications, various researchers have added specialist knowledge and undertaken studies to improve

these modules to solve navigation problems. In most cases, the agents learn from data or through trial and error to

master navigational skills and facilitate the generalisation of learned skills in similar settings in simulation

environments, which is valuable for reducing training time and real-world difficulties. The virtual platform helps to

manage environmental factors and task structure that can influence the efficiency, adaptability, and reusability of

these models before transferring to the real-world environment. In the context of the MRO hangar environment, the

robotic systems are subject to complexities and uncertainties due to the unstructured nature of the settings,

variability in object types, and sensor capacity. This demands robust solutions capable of perceiving, responding

and adapting to real-time changes.

2.4. Vision Sensors

To effectively perform robotics tasks, mobile robots require a thorough understanding of their environment. To

achieve this, robots are equipped with sensors that enable them to perceive and gather relevant information from

the surroundings. Vision-based sensors, including LiDAR, cameras, and depth cameras, have become the most

used equipment for unmanned vehicle (UV) detection and navigation tasks . LiDAR is extensively used in the

detection and tracking of AMR, even though it may be more costly than some alternatives. The sensor can obtain

reliable information, including basic shape, precise distance measurements, and position of the obstacle, and is

more efficient in different weather and lighting conditions . However, the ability to capture the texture and colour

of objects for accurate obstacle detection is limited compared with cameras . This limitation can result in

challenges when attempting to accurately track fast-moving objects in real time. RGBD cameras have also shown

great capabilities, including high resolution and generation of rich and detailed environment information, though

within a limited range, but are greatly efficient in object position estimation using depth information . However,
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the performance is highly susceptible to lightning conditions, which can be associated with certain areas in the

hangar environments. The hangar environment has significant influences on the choice of appropriate perception

sensors for operational use within the space. Obstacle detection sensors are designed to interact with the

environment and generate environmental data through sensor devices. They then use algorithms based on

computer vision and object recognition for obstacle detection, tracking, and avoidance in a navigation system. To

complement the capabilities of the RGB camera, depth sensing was combined in  to provide an accurate

distance between obstacles and the robot position based on operational range and resolutions. The authors in 

employed depth camera information to estimate robots’ poses for an efficient navigation experience. Depth

cameras like Microsoft Kinect, Intel RealSense, and OAK-D offer valuable 3D spatial data that can enhance robots’

understanding of their environment with precision. The integration generally facilitates obstacle sensing and state

estimation for robust obstacle avoidance and path planning. Like the RGB cameras, variable lighting conditions

and environmental factors can affect the accuracy of the perceived obstacles and position. This perception

constraint is part of obstacle avoidance and path planning challenges in complex settings.

Recent research has made significant contributions to intelligent obstacle detection and avoidance solutions based

on sensor usages and algorithm improvement. The work in  presents different configurations and capabilities of

vision sensors relevant across diverse domains. Manzoor et al.  analysed Vison sensor modalities as intricate

factors in understanding environmental features used in deep learning models for real-world mobile robot’s

obstacle detection and navigation operation. Xie et al.  improved obstacle detection and avoidance techniques

through the utilisation of 3D LiDAR. Their study highlights the proficiency of LiDAR in detecting basic shapes and

identifying obstacles at extended ranges. The integration of sensor data for more comprehensive environmental

perception in learning-based models has been a notable development in the field of robotic navigation. This

translates raw sensor data into usable information to enhance the system’s capability from environmental

perception to improved efficiency in obstacle detection and effective decision making for obstacle avoidance and

path planning.

2.5. Obstacle Detection

Obstacle perception and identification for robot navigation involves locating potential obstacles that could influence

a robot’s ability to navigate in its surroundings. The mobile robot utilises its sensory systems, which may include

LiDARs or cameras, to perceive and understand its environment, enabling it to plan a safe and collision-free path

to its intended destination. Deep learning has gained wide adoption in research and industry, leading to the

development of numerous navigation models that leverage different object detection models and sensor inputs for

robot obstacle detection and avoidance systems. Most recent object detection methods are based on convolutional

neural networks (CNNs) like YOLO , Faster R-CNN , and single-shot multibox detectors . Faster R-CNN is

renowned for its high detection accuracy and employs a two-stage deep learning framework. This network

structure impacts computational efficiency and speed, which are crucial factors for real-time applications . The

YOLO model, on the other hand, is a one-stage object section approach that is known for significant speed and

real-time performance. This makes it well suited for autonomous mobile robot navigation, in which prompt decision

making is important for obstacle avoidance and motion control.
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2.6. Obstacle Avoidance

Ensuring the safety of the working environment is a primary priority when deploying mobile robots for navigation

tasks in complex environments. The safety solution should be able to perceive the environment and take proactive

actions to avoid obstacle collisions using reliable sensors . The mobile robot should have the capability to

identify a safe and efficient path to navigate within its operational environment, which may contain static and

dynamic obstacles to the target destination. Different learning-based obstacle avoidance algorithms have been

developed to enable robots to effectively and precisely complete intended tasks. Some are integrated with local

and global planners to efficiently adjust the direction and speed of robot motion in response to detected obstacles

within static and dynamic environments to generate an improved path to reach the target location . Recent

review studies, learning-based models in robotic navigation, have demonstrated notable success by learning and

generating obstacle data from environment sensors. These models extract obstacle features from images and

video streams, allowing them to classify and locate different obstacles within the given environment. The

integration of these models into robot operating system (ROS)-based planners has shown improved performance

in robotic navigation. Planning algorithms like the dynamic window approach (DWA)  have good capabilities in a

dynamic and complex environment and have been widely combined with learning algorithms for more capability,

efficiency, and intelligent path planning .

2.7. Path Planning

Autonomous learning in path planning has made significant progress in recent times, where technologies such as

CNN and deep reinforcement learning have been increasingly adopted. Path planning entails a sequence of

configurations based on robot types and environment models that enable robots to navigate from a starting point to

a target location . The environment can be mapped to represent geometric information about the environment

and connectivity between different nodes or maples. The map-based method enables the robotic solutions to

compute the robot’s dynamics and environment representation for an optimal global path planning to the goal .

For local path planning, it relies on real-time sensory information to navigate safely in the presence of static and

dynamic obstacles. Another aspect of path planning configuration is the maples model, which requires no

predefined map of the environment but rather capitalises on frameworks like deep learning models to learn and

enhance optimal navigation strategies. Path planning in an MRO hangar can be challenging, as the environment is

often changing and complex with a high density of obstacles. To ensure a robust obstacle-free path, ongoing

research is focusing on path tracking , advanced deep learning , and hybrid approaches for more

autonomous and intelligent robot path planning to target locations .

2.8. Path Tracking

Safe and efficient robot navigation requires a path tracking system that guides mobile robots along the planned

trajectory to a target location, managing and minimising deviation from the planned route. This involves continuous

monitoring and updating of the planned route based on sensor feedback and the changing environment. The work

in  reviewed path tracking algorithms relative to high and low speeds. For high-speed applications, the reaction
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time available for the robots to perceive, process, and respond to obstacles was significantly reduced at high

velocities, making it harder to execute quick and sharp manoeuvres without compromising stability or safety.

Looking at low-speed use cases, the application of robotic systems in MRO hangars involved low-speed movement

and the requirement for precise path tracking in complex settings. The low-speed movement of these robots led to

path tracking errors, especially when dealing with sharp turns and frequent changes in direction. Accurate

modelling of low-speed dynamics is essential to adjust the robot’s behaviour for optimal path tracking. The

combination of adaptive control systems, sensor technologies , and advanced deep learning techniques have

been shown to enhance robust real-time path tracking capability for robot navigation in such scenarios. From the

study in , the most applied path tracking algorithms include pure pursuit (PP) , model predictive control (MPC)

, as well as learning-based models to generate control laws leveraging training data and experience from a

variety of scenarios .
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