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Precision beekeeping (PB) systems have promising strength points and represent great opportunities for the

development of beekeeping; however, they have some weaknesses, represented especially by the high purchasing

costs and the low preparedness of the addressed operators, and imply some possible threats for beekeeping in

terms of unrealistic perception of the apiary status if they applied to some hives only and a possible adverse impact

on the honeybees’ colony itself.
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1. Introduction

One of the most important challenges of this and, probably, the next century is to safeguard biodiversity around the

world. In this regard, great attention has been focused on insects, whose decline on the local and global scales has

been reported . Insects are responsible for a wide range of functional roles , one of which is pollination; in

fact, the pollinators can improve the production of 70% of the globally most important crop species and influence

35% of the global human food supply . Medium- and long-term strategies can be studied to control the decline of

wild pollinators , but, in the short-term, one of the possible strategies is to increase the number of farmed

pollinators, in particular honeybees (Apis mellifera L.). In this context, honeybees and beekeepers are two

important resources for the Earth: insects for their pivotal role in pollination, and humans for their ability to protect

and preserve the health and survival of the honeybees. However, the famed honeybee is also exposed to several

risks, such as the use of pesticides for intensive crops , climate change, and the impact of pathogens

(parasites, bacteria, and viruses) responsible for a wide range of illnesses. Beekeepers try to contrast these risks

by using appropriate farming techniques, different kinds of chemicals, and/or drugs; however, the results are not

always satisfactory , and the health and production of the honeybee are often negatively affected. To obtain

better production (and better insect health) from a hive, it is important to have proper management, as it is well

known that regular inspections of the colonies can improve honey production and thus the remuneration of the

farming activity. However, it is important to underline that, in some circumstances, manual visits to the hive can

have negative impacts on the colony . In addition, very often the beekeepers could not check their hives with

regularity, for example, due to climate conditions or low time availability. In this context, modern technology can be

a valuable help for beekeepers. The term “Precision Beekeeping” (PB) has been defined for the first time by

Zacepins et al.  as a strategy for the management of an apiary based on monitoring individual honeybee

colonies to minimize resource consumption and maximize productivity. This new approach can be considered a
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new evolutionary phase of beekeeping, as indicated by Zogovic et al. : from “traditional beekeeping”, through

“rational beekeeping”, up to “Precision Beekeeping”. The PB is organized into three key points: data collection,

data processing, and the data output phase . As recently reported by Alleri et al. , data can be captured by

different kinds of sensors for monitoring, for example, weight, temperature, humidity, sounds, etc. The sensors can

be placed inside or outside the hive; in this way, the hive becomes “smart”. In this way, the data is checked in real-

time through specific applications on different devices (personal computers, tablets, and smartphones) and

processed thanks to algorithms. Beekeepers can thus consult and download the data obtained from their archives.

The data processing is important to define if a condition measured at a specific time falls or is not within a “normal”

range. In addition, the processing data system can produce signal alarms if some parameter is out of the “normal”

standard. From a practical perspective, PB is not only the application of intelligent technologies to hive bee farming

but also an in-depth knowledge of the various genetical, nutritional, physiological, and physio-pathological aspects

linked to the world of bees. Precision beekeeping is at the beekeeper’s service, but the beekeeper must be able to

properly read the indications that the digital system provides him, including the alarm signals. Technology is a very

important aid, but it is not infallible; therefore, it can support the beekeeper but not replace him, because obviously,

it is up to him to make the final decision on any corrective measures to be taken in the presence of anomalous

situations. All in all, it seems clear that talking about a multifaceted topic such as precision beekeeping is not easy.

2. Data Collection and Storage: Sensors and Systems

In PB, data collection is the first and probably one of the most important steps. It is typically performed using

sensors integrated into beehives and connected to the main processing system . A sensor (or node) is a device

sensitive to a specific physical–chemical cue and, if solicited, can generate an electrical signal . These

advanced sensors are equipped with a microprocessor powered by batteries; the microprocessor records the data

and, thanks to a Wireless Sensor Network (WSN) system , sends it to a remote server for processing .

Sensors, microprocessor, battery, and remote server are part of the “system” that is completed by the device of the

beekeeper (personal computer, smartphone, or tablet) in which a specific application shows the data to the user on

demand and sends signals of alarm if a parameter, for example, the temperature, the weight, the relative humidity,

the buzz sounds, the gases, as well as the honeybee activity and the location of the hive, are outside the normal

range . Thus, the type of sensor (and thus its accuracy) is very important. It is possible to use very simple and

low-cost systems. The problem is whether these systems can achieve useful control over the hive. For example,

Romanov  used an on-site bee colony approach to evaluate the hive temperature, in which a small digital sensor

is placed inside the hive and connected to an external display where the temperature is reported. This very simple

system is not able to send the data via the web, and the temperature can be observed remotely only by placing a

camera near the digital display. This system may seem functional, but the main problem is that the data cannot be

stored , and it is possible to only do on-site or on-time observation without an alarm signal available for

beekeepers. The progress of these technologies allows for different and more flexible systems to record, store, and

process data. For example, the data recorded by sensors can be transmitted by wired or wireless connection to a

PC on the apiary . This kind of solution allows for more information to be given to the beekeeper, but to

record and send the data, the PC must be turned on (energy expenditure). Another possibility is double-data
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sending. The sensors recorded the data and transmitted them to the apiary PC, which is connected to a remote

service or a cloud device . In this case, the local PC is only an intermediary, and the data storage and

processing are from the remote service. The remote service will send the data to the beekeeping devices. When

the apiary’s PC is turned off, it is possible to store the data on the remote server, but they cannot be processed.

Another approach relies on micro-controller platforms to collect and send the data to the remote controller. The

micro-controller platforms need less energy and thus are more stable than a PC, but if the system is turned off, the

data processing is interrupted, and no data or alarms are sent to the beekeeper’s devices. However, more modern

technologies are producing sensors able to connect to the web using 4G or 5G connections. In this way, recorded

data is sent directly to the remote server for storage and processing, and only the interruption of the network or the

breakage of the sensors can interfere with the monitoring of the hives. All this is possible where the apiary is

reached by a 4G or 5G connection (even 3G in some sensors). Though networks are by now fairly spread in rural

areas, it is possible that some areas are not completely covered by the service. In addition, with this kind of

approach, each sensor point needs a battery as a source of energy and a SIM for the connection to the network. It

means that each hive beekeeper must provide these resources.

2.1. Weight

The weight of a beehive fluctuates according to the season (the lowest during winter, the highest during the

productive period) and can be a valuable predictor of honey production and, in general, of the activity of the hive.

The weight is probably the easiest parameter to measure by using, in general, non-invasive sensors. The different

systems available on the market use a scale consisting of load cells, which rely on mechanics and resistive theory,

integrated with amplifier modules that are linked to the microcontroller . The load cells are made of a material

that moves back when pressure (weight) is applied. One used technology is a “resistive strain gauge” in the load

cell, which makes it possible to measure the resistance (Ohm) of the cell . An important aspect when working

with load cells is the temperature and humidity around the cell, which will make the value change for the same

load, resulting in different measurement values . The load cells can be converted into dedicated electronic

circuits (Analog to Digital Conversion, ADC). The ADC circuits are standardized, and one interesting characteristic

of ADC converters is the resolution, defining how detailed values the ADC will provide as output. For accurate,

reliable measurements and ease of use, the weight sensor or weighing scale is placed under a hive, where each

hive can comprise multiple supers/chambers. A single honey chamber can weigh up to 30 kg, which means that a

hive with three honey chambers and a brood chamber can weigh up to 120 kg. The weighing scale needs to have

an appropriate range of measurements and must be sensitive enough to detect daily changes in the weight of the

hive with a resolution of a few grams (in general, less than 100 g) . The choice of hive type also plays a role in

this variation.

2.2. Temperature

Temperature was one of the first parameters recorded in a hive. Almost a century ago, in 1926, Dunham 

conducted one of the first experiments by using eight thermocouples placed in different sites of the hive and

manually recording the temperature each hour . The temperature is a very important parameter for bee colonies,
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as its detection can be used to identify different conditions in the hive, such as brood development, the pre-

swarming condition, and, in general, the health status of the hive. The temperature of the hive can be monitored by

using different systems. Cook et al.  equipped the experimental hives with four temperature sensors located in

the middle of the frames, from the central one to the outskirts of the hives. In hives with active bee colonies, there

was an average gradient of 0.03 °C/cm in the observed temperature range (p < 0.001). In hives with no bees, this

slope was reduced from 0.025 °C/cm (p < 0.001) to 0.005 °C/cm . However, based on a total of 776,872

observations, the authors concluded that the variation in the time to reach the peak temperature at different sensor

points was not significant .

2.3. Sounds

Sounds, produced through body vibrations, are one of the methods used by honeybees for on-colony

communication . The detection of specific sound signals produced by honeybees can be useful in assessing

physiological or pathological conditions in the hive. The honeybees can produce sound with frequencies ranging

from about 0 up to a few thousand hertz . Thus, the first requirement for an acoustic sensor to be included in the

hive is to work in this frequency range. Another very important point is to choose the most appropriate acoustic

sensor, as the technology supplies different kinds of microphones: electret microphones, a type of electrostatic

capacitor-based microphone that eliminates the need for a polarizing power supply by using a permanently

charged material, used by Qandour et al.  and Anand et al. ; and microelectromechanical system (MEMS)

microphone, a micro-scale device used, for example, for smartphones, that provide high-fidelity acoustic sensing

and is small enough to be included in a tightly integrated electronic product . In the past, another system has

been studied to measure the vibration in the hive: the laser Doppler vibrometer proposed by Michelsen et al. .

The laser Doppler vibrometer (LDV) is a tool that measures such vibrations by directing a laser at a surface and

comparing the frequency of the returning light to an internal reference beam . This system is very precise and

has several applications in different kinds of industries, but it is also too expensive. In fact, no other research is

available in the literature on the application of this system for vibration detection in the hive.

2.4. Images

The collection of images is an interesting and very useful approach. By acquiring videos of pictures, the beekeeper

can directly see the honeybees and, in some cases, detect a problem without the necessity of data processing.

Optical cameras have, in general, been placed at the entrance of the hive to monitor the honeybee “traffic”,

including foraging, surveillance, and fan activities. Edwards-Murphy et al.  tried to use an infrared camera inside

the hive to monitor the activity of the family, but this system had no further applications, probably due to technical

problems. To control the honeybee traffic, the external camera must be placed at an adequate distance from the

hive entrance. Crawford et al.  placed the cameras 27.4 cm from the hive entrance; Yang and Collins  placed

the camera 30 cm above the hive entrance; and, to permit better vision of the animals, the platform was painted

green; and Sledevic  placed the cameras 40 cm above the hive. Kulyukin and Mukherjee  placed the cameras

on top of supers (one or two with a distance camera-landing platform of 35 and 60 cm, respectively) and showed

no problems with computer vision and the consequent algorithm application. Shimasaki et al.  placed the

[31]

[31]

[31]

[32]

[22]

[33] [34]

[35][36]

[32]

[37]

[27]

[38] [39]

[40] [36]

[41][42]



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 5/12

cameras in front of the beehives. All those approaches have proven to be effective for monitoring honeybee

activity, but their efficacy depends on the resolution of the camera used. As a specific type of camera, thermal

cameras can also be used to monitor the temperatures of the honeybees or the hives, with the aim of detecting

temperature changes in pre-swarming conditions . To date, no thermal camera has been used to count the

incoming and outgoing activity at a hive entrance  due to its high cost, low resolution, and low frame rate in

comparison to optical cameras. Probably, this kind of system can have future development as the technology

recently produced low-cost thermal cameras for medical applications .

2.5. Gases

The air inside the hive is a complex mixture of many different volatile compounds released by the honeybees (e.g.,

pheromones, other chemicals released to repel pests and predators, metabolites, etc.), within the hive (from honey,

nectar, larvae, beeswax, pollen, and propolis, or materials out of which hives are constructed), and external

sources (from vehicles, farms, industries, and households in the vicinity of hives) . Each hive has an individual

gas profile. Considering that the other gas producers are, in general, constant, changes in gas composition inside

the hive are tied to changes in gas emissions by honeybee adults or larvae. The simplest gas to detect is carbon

dioxide, whose increasing concentrations can indicate, for example, an increase in workers’ population in the hive

and, over a certain limit, can indicate an inappropriate environment for honeybees . Metal oxide semiconductors

(MOx) are gas sensors whose small size allows their placement in the hive . One family of these MOx sensors

responds to give an estimate for CO . These sensors have a low power consumption , but the cost is still high,

so a practical application in beekeeping is difficult at this stage. In addition, MOx sensors can detect a wide range

of gases, so a specific calibration is mandatory to understand what kind of gas the sensor is measuring at a

specific time .

2.6. Humidity

The measurement of humidity is readily available in low-cost, small capacitive sensors that provide a high level of

accuracy both in analog and digital formats . Digital devices usually include temperature measurements in the

same package and reduce measurement errors by undertaking Analog to Digital Conversion on the sensor chip

rather than introducing possible noise in the measurements . Easily deployable breakout boards start for as

little as EUR 8, with the raw chips costing even less. Many manufacturers produce these with inter–integrated

circuit (i2c) interfaces, each with different addresses, allowing some spatial variation over a hive to be monitored

with relatively simple and inexpensive hardware .

3. Internet of Bees and Data Management

The term “Internet of Bees” (IoB) is reported to indicate the application of IoT to beekeeping. The data collected

with the different kinds of sensors applied to the hive must be stored in a system (from a local PC to a cloud). As

more data are collected, the more precise will be any sort of prediction of hive behavior or activity. From this point

of view, a great role plays in the possibility of creating archives of big data and the possibility of sharing the data
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collected from different apiaries. Different datasets can be available in the libraries of the companies producing PB

systems, where data is protected from other web users. The working process of data can be described by using

the OODA loop as described by Brehmer  and Atwood : Observe, Orient, Decide, Act. Also, in traditional and

rational beekeeping, the same loop is used, but with manual or semi/automated inspection instead of using

electronics, like IoB devices. All IoB devices need internet connectivity. There are multiple techniques used,

including Wi-Fi, Bluetooth, Mobile Internet (5G, 4G, or 3G), Fibre Broadband, etc. The development of embedded

electronics like Arduino  and Raspberry Pi  has created new opportunities to have a low-cost, standardized

device to use as an IoT device. The processing phase of bee colony data is typically limited to basic statistical

analysis  to determine such bee colony states as queenlessness, bloodlessness, pre-swarming, swarming, and

after-swarming. The data output phase includes methods to provide processed data—information—to the end user

in the form of a graphical or tabular representation. As recently underlined by , the use of wireless network

technologies in PB has some limitations, represented by data imperfections, granularity, or inconsistency, but also

technical problems such as internet or mobile network coverage. To reduce mistakes that can generate false

alarms, it is possible to use multi-sensors with additional data sources. However, this solution poses another

challenge: processing data from different sources as a singular unit. This kind of advanced approach is defined as

data fusion. Data fusion is the process of integrating multiple data sources to produce more consistent, accurate,

and useful information than that provided by any individual data source. In the OODA approach, orienting and

deciding acts are possible with the application of specific mathematical models (algorithms) able to analyze data

and predict possible evolutions or consequences of a specific situation. Machine Learning (ML) integrates statistics

and computer science to build algorithms that are more efficient when they are subject to relevant data rather than

being given specific instructions . Different mathematical models can be used to process the data, and the

precision of the output depends on the quantity and quality of the data as well as the accuracy of the prediction

model. Brini et al.  used different tree methods: Random Forest , Extreme Gradient Boosting (XGB) , and a

regression tree  to analyze data on hive weight and concluded that the first two methods outperformed linear

models when predicting the hive weight variation. Andrijevi et al.  applied mathematical models based on

recurrent neural networks to the data obtained from a bee counter at the hive entrance and showed a very high

accuracy of the prediction. Pham et al.  tested different algorithms to process data on the foraging behavior of

honeybees and observed that all were highly competitive in terms of learning accuracy and speed. Dimitrios et al.

 tested three different classification algorithms: the k-Nearest Neighbors algorithm (k-NN) and Support Vector

Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for

biomedical image segmentation. The results show that k-NN and SVM, which are already used for bee sound

analysis processes, provide the most accurate results for late and early detection of swarming, respectively.

Focusing on early detection, which can alleviate or prevent the event, our experiment showed that SVM is the most

appropriate method, while k-NN fails to detect it accurately. For early detection of swarming events, U-Net CNN

performs almost as well as SVM and has the potential to perform even better with frequency-targeted data input

and model parameter fine-tuning. The authors set, as future work, the extensive evaluation of the proposed U-Net

CNN algorithm fine-tuning towards swarming events and the extension of their experiments to other deep learning

algorithms.

[56] [57]

® TM

[58]

[59]

[60]

[61] [62] [63]

[64]

[65]

[66]

[67]



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 7/12

References

1. Duffus, N.E.; Echeverri, A.; Dempewolf, L.; Noriega, J.A.; Furumo, P.R.; Morimoto, J. The Present
and Future of Insect Biodiversity Conservation in the Neotropics: Policy Gaps and
Recommendations. Neotrop. Entomol. 2023, 52, 407–421.

2. Metcalfe, D.B.; Asner, G.P.; Martin, R.E.; Espejo, J.E.S.; Huasco, W.H.; Amézquita, F.F.F.;
Carranza-Jimenez, L.; Cabrera, D.F.G.; Baca, L.D.; Sinca, F.; et al. Herbivory Makes Major
Contributions to Ecosystem Carbon and Nutrient Cycling in Tropical Forests. Ecol. Lett. 2014, 17,
324–332.

3. Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.I.; Del Toro, I.;
Goulson, D.; Ibanez, S.; Landis, D.A.; et al. Research Trends in Ecosystem Services Provided by
Insects. Basic Appl. Ecol. 2018, 26, 8–23.

4. Seibold, S.; Rammer, W.; Hothorn, T.; Seidl, R.; Ulyshen, M.D.; Lorz, J.; Cadotte, M.W.;
Lindenmayer, D.B.; Adhikari, Y.P.; Aragón, R.; et al. The Contribution of Insects to Global Forest
Deadwood Decomposition. Nature 2021, 597, 77–81.

5. Varga-Szilay, Z. Jeff Ollerton: Pollinators & Pollination: Nature and Society. Community Ecol.
2023, 24, 135.

6. Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.;
Whitbread, A. Global Food Security, Biodiversity Conservation and the Future of Agricultural
Intensification. Biol. Conserv. 2012, 151, 53–59.

7. Staab, M.; Gossner, M.M.; Simons, N.K.; Achury, R.; Ambarlı, D.; Bae, S.; Schall, P.; Weisser,
W.W.; Blüthgen, N. Insect Decline in Forests Depends on Species’ Traits and May Be Mitigated
by Management. Commun. Biol. 2023, 6, 338.

8. De Jong, D.; Lester, P.J. The Global Challenge of Improving Bee Protection and Health. Front.
Bee Sci. 2023, 1, 2018–2022.

9. Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.;
Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc.
B Biol. Sci. 2007, 274, 303–313.

10. Aizen, M.A.; Harder, L.D. The Global Stock of Domesticated Honey Bees Is Growing Slower than
Agricultural Demand for Pollination. Curr. Biol. 2009, 19, 915–918.

11. Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of
World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821.

12. Tan, K.; Yang, S.; Wang, Z.; Menzel, R. Effect of Flumethrin on Survival and Olfactory Learning in
Honeybees. PLoS ONE 2013, 8, e66295.



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 8/12

13. van Engelsdorp, D.; Hayes, J.; Underwood, R.M.; Pettis, J. A Survey of Honey Bee Colony
Losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 2008, 3, e4071.

14. Fries, I. Nosema Apis—A Parasite in the Honey Bee Colony. Bee World 1993, 74, 5–19.

15. Zacepins, A.; Stalidzans, E.; Meitalovs, J. Application of information technologies in precision
apiculture. In Proceedings of the 13th International Conference on Precision Agriculture (ICPA
2012), St. Louis, MO, USA, 31 July–3 August 2016.

16. Zogovic, N.; Mladenovic, M.; Rašić, S. From Primitive to Cyber-Physical Beekeeping. In
Proceedings of the 7th International Conference on Information Society and Technology ICIST,
Kopaonik, Serbia, 12–15 March 2017; pp. 38–43.

17. Bumanis, N. Data Fusion Challenges in Precision Beekeeping: A Review. Res. Rural Dev. 2020,
35, 252–259.

18. Alleri, M.; Amoroso, S.; Catania, P.; Lo Verde, G.; Orlando, S.; Ragusa, E.; Sinacori, M.; Vallone,
M.; Vella, A. Recent Developments on Precision Beekeeping: A Systematic Literature Review. J.
Agric. Food Res. 2023, 14, 100726.

19. Kviesis, A.; Zacepins, A. System Architectures for Real-Time Bee Colony Temperature Monitoring.
Procedia Comput. Sci. 2015, 43, 86–94.

20. Patel, S.K.; Parmar, J.; Zakaria, R.B.; Sharafali, A.; Nguyen, T.K.; Dhasarathan, V. Sensitivity
Analysis of Metasurface Array-Based Refractive Index Biosensors. IEEE Sens. J. 2021, 21,
1470–1477.

21. Cheklat, L.; Amad, M.; Boukerram, A. A Limited Energy Consumption Model for P2P Wireless
Sensor Networks. Wirel. Pers. Commun. 2017, 96, 6299–6324.

22. Hadjur, H.; Ammar, D.; Lefèvre, L. Toward an Intelligent and Efficient Beehive: A Survey of
Precision Beekeeping Systems and Services. Comput. Electron. Agric. 2022, 192, 106604.

23. Romanov, B. Bee Hive Live Camera. Available online: http://www.beebehavior.com/livecam.php
(accessed on 12 November 2023).

24. Meitalovs, J.; Histjajevs, A.; Stalidzans, E. Automatic Microclimate Controlled Beehive
Observation System. In Proceedings of the International Conference “The 8th International
Scientific Conference Engineering for Rural Development”, Jelgava, Latvia, 29 May 2009; pp.
265–271.

25. Zacepins, A.; Brusbardis, V.; Meitalovs, J.; Stalidzans, E. Challenges in the Development of
Precision Beekeeping. Biosyst. Eng. 2015, 130, 60–71.

26. Anuar, N.H.K.; Yunus, M.A.M.; Baharuddin, M.A.; Sahlan, S.; Abid, A.; Ramli, M.M.; Abu Amin,
M.R.; Lotpi, Z.F.M. IoT Platform for Precision Stingless Bee Farming. In Proceedings of the 2019



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 9/12

IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor,
Malaysia, 29–29 June 2019; pp. 225–229.

27. Fitzgerald, D.W.; Edwards-Murphy, F.; Wright, W.M.D.; Whelan, P.M.; Popovici, E.M. Design and
Development of a Smart Weighing Scale for Beehive Monitoring. In Proceedings of the 26th Irish
Signals and Systems Conference (ISSC), Carlow, Ireland, 24–25 June 2015; pp. 1–6.

28. Anwar, O.; Keating, A.; Cardell-Oliver, R.; Datta, A.; Putrino, G. Apis-Prime: A Deep Learning
Model to Optimize Beehive Monitoring System for the Task of Daily Weight Estimation. Appl. Soft
Comput. 2023, 144, 110546.

29. Dunham, W. Hive Temperatures for Each Hour of a Day. Ohio J. Sci. 1931, 31, 181–188.

30. Zacepins, A.; Karasha, T. Application of Temperature Measurements for Bee Colony Monitoring: A
Review. Eng. Rural Dev. 2013, 23, 126–131.

31. Cook, D.; Tarlinton, B.; McGree, J.M.; Blackler, A.; Hauxwell, C. Temperature Sensing and Honey
Bee Colony Strength. J. Econ. Entomol. 2022, 115, 715–723.

32. Michelsen, A.; Kirchner, W.H.; Lindauer, M. Sound and Vibrational Signals in the Dance Language
of the Honeybee, Apis Mellifera. Behav. Ecol. Sociobiol. 1986, 18, 207–212.

33. Qandour, A.; Ahmad, I.; Habibi, D.; Leppard, M. Remote Beehive Monitoring Using Acoustic
Signals. Acoust. Aust. 2014, 42, 204–209.

34. Anand, S.A.; Saxena, N. Noisy Vibrational Pairing of IoT Devices. IEEE Trans. Dependable
Secur. Comput. 2019, 16, 530–545.

35. Ferrari, S.; Silva, M.; Guarino, M.; Berckmans, D. Monitoring of Swarming Sounds in Bee Hives
for Early Detection of the Swarming Period. Comput. Electron. Agric. 2008, 64, 72–77.

36. Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward Audio Beehive Monitoring: Deep Learning vs.
Standard Machine Learning in Classifying Beehive Audio Samples. Appl. Sci. 2018, 8, 1573.

37. Rothberg, S.J.; Allen, M.S.; Castellini, P.; Di Maio, D.; Dirckx, J.J.J.; Ewins, D.J.; Halkon, B.J.;
Muyshondt, P.; Paone, N.; Ryan, T.; et al. An International Review of Laser Doppler Vibrometry:
Making Light Work of Vibration Measurement. Opt. Lasers Eng. 2017, 99, 11–22.

38. Crawford, E.; Leidenberger, S.; Norrström, N.; Niklasson, M. Using Video Footage for Observing
Honey Bee Behaviour at Hive Entrances. Bee World 2022, 99, 139–142.

39. Yang, C.; Collins, J. Deep Learning for Pollen Sac Detection and Measurement on Honeybee
Monitoring Video. In Proceedings of the 2019 International Conference on Image and Vision
Computing New Zealand (IVCNZ), Dunedin, New Zealand, 2–4 December 2019.

40. Sledevic, T. The Application of Convolutional Neural Network for Pollen Bearing Bee
Classification. In Proceedings of the 2018 IEEE 6th Workshop on Advances in Information,



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 10/12

Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 8–10 November 2018.

41. Shimasaki, K.; Okamura, T.; Jiang, M.; Takaki, T.; Ishii, I.; Yamamoto, K. HFR-Video-Based Image
Pattern Recognition Using Pixel-Level Temporal Frequency Response Matching. In Proceedings
of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE),
Munich, Germany, 20–24 August 2018; pp. 451–456.

42. Shimasaki, K.; Jiang, M.; Takaki, T.; Ishii, I.; Yamamoto, K. HFR-Video-Based Honeybee Activity
Sensing. IEEE Sens. J. 2020, 20, 5575–5587.

43. Klein, B.A.; Stiegler, M.; Klein, A.; Tautz, J. Mapping Sleeping Bees within Their Nest: Spatial and
Temporal Analysis of Worker Honey Bee Sleep. PLoS ONE 2014, 9, e102316.

44. Bonoan, R.E.; Goldman, R.R.; Wong, P.Y.; Starks, P.T. Vasculature of the Hive: Heat Dissipation
in the Honey Bee (Apis mellifera) Hive. Naturwissenschaften 2014, 101, 459–465.

45. Williams, S.M.; Bariselli, S.; Palego, C.; Holland, R.; Cross, P. A Comparison of Machine-Learning
Assisted Optical and Thermal Camera Systems for Beehive Activity Counting. Smart Agric.
Technol. 2022, 2, 100038.

46. Villa, E.; Arteaga-marrero, N. Performance Assessment of Low-Cost Thermal. Sensors 2020, 20,
1321.

47. Szczurek, A.; Maciejewska, M. Beehive Air Sampling and Sensing Device Operation in Apicultural
Applications—Methodological and Technical Aspects. Sensors 2021, 21, 4019.

48. Seeley, T.D. Atmospheric Carbon Dioxide Regulation in Honey-Bee (Apis mellifera) Colonies. J.
Insect Physiol. 1974, 20, 2301–2305.

49. Bencsik, M.; McVeigh, A.; Tsakonas, C.; Kumar, T.; Chamberlain, L.; Newton, M.I. A Monitoring
System for Carbon Dioxide in Honeybee Hives: An Indicator of Colony Health. Sensors 2023, 23,
3588.

50. Hadjur, H.; Ammar, D.; Lefèvre, L. Analysis of Energy Consumption in a Precision Beekeeping
System. In Proceedings of the 10th International Conference on the Internet of Things, Malmö,
Sweden, 6–9 October 2020.

51. Miquel-Ibarz, A.; Burgués, J.; Marco, S. Global Calibration Models for Temperature-Modulated
Metal Oxide Gas Sensors: A Strategy to Reduce Calibration Costs. Sens. Actuators B Chem.
2022, 350, 130769.

52. Höfner, S.; Schutze, A. Environmental Education for High School Students—Investigation of Air
Quality with Low-Cost Sensors. In Environmental Informatics and Modeling; De Vito, S., Karatzas,
K., Bartonova, A., Fattoruso, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 139–161.

53. Tashakkori, R.; Hamza, A.S.; Crawford, M.B. Beemon: An IoT-Based Beehive Monitoring System.
Comput. Electron. Agric. 2021, 190, 106427.



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 11/12

54. Newton, M.I.; McVeigh, A.; Tsakonas, C.; Bencsik, M. A Monitoring System for Carbon Dioxide
and Humidity in Honeybee Hives. Eng. Proc. 2022, 1, 89.

55. Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Primiani, V.M.; Moglie, F.; Ruschioni, S.; Mattei,
C.; Riolo, P.; Isidoro, N. Multi-Sensor Platform for Real Time Measurements of Honey Bee Hive
Parameters. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012016.

56. Brehmer, B. The Dynamic OODA Loop: Amalgamat Ing Boyd’s OODA Loop and the Cybernetic
Approach to Command and Control. In Proceedings of the 10th International Command and
Control Research and Technology Symposium the Future of C2, MacLean, VA, USA, 13–16 June
2005.

57. Atwood, J. Boyd’s Law of Iteration. 07-02-2007. Copyright Jeff Atwood © 2023. Available online:
https://blog.codinghorror.com/boyds-law-of-iteration/ (accessed on 16 November 2023).

58. Henry, E.; Adamchuk, V.; Stanhope, T.; Buddle, C.; Rindlaub, N. Precision Apiculture:
Development of a Wireless Sensor Network for Honeybee Hives. Comput. Electron. Agric. 2019,
156, 138–144.

59. Bumanis, N.; Komasilova, O.; Komasilovs, V.; Kviesis, A.; Zacepins, A. Application of Data
Layering in Precision Beekeeping: The Concept. In Proceedings of the 2020 IEEE 14th
International Conference on Application of Information and Communication Technologies (AICT),
Tashkent, Uzbekistan, 7–9 October 2020.

60. Jijo, B.T.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning.
J. Appl. Sci. Technol. Trends 2021, 2, 20–28.

61. Brini, A.; Giovannini, E.; Smaniotto, E. A Machine Learning Approach to Forecasting Honey
Production with Tree-Based Methods. arXiv 2023, arXiv:2304.01215.

62. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32.

63. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd
Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, 13–17 August 2016; pp. 785–794.

64. Breiman, L.; Ihaka, R. Nonlinear Discriminant Analysis via Scaling and ACE; Department of
Statistics, University of California: Davis, CA, USA, 1984.

65. Andrijević, N.; Urošević, V.; Arsić, B.; Herceg, D.; Savić, B. IoT Monitoring and Prediction
Modeling of Honeybee Activity with Alarm. Electronics 2022, 11, 783.

66. Pham, D.T.; Castellani, M. The Bees Algorithm: Modelling Foraging Behaviour to Solve
Continuous Optimization Problems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223,
2919–2938.



Precision Beekeeping Systems | Encyclopedia.pub

https://encyclopedia.pub/entry/53981 12/12

67. Dimitrios, K.I.; Bellos, C.V.; Stefanou, K.A.; Stergios, G.S.; Andrikos, I.; Katsantas, T.;
Kontogiannis, S. Performance Evaluation of Classification Algorithms to Detect Bee Swarming
Events Using Sound. Signals 2022, 3, 807–822.

Retrieved from https://encyclopedia.pub/entry/history/show/122233


