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The Surveillance Video Anomaly Detection (SVAD) system is a sophisticated technology designed to detect unusual or

suspicious behavior in video surveillance footage without human intervention. The system operates by analyzing the video

frames and identifying deviations from normal patterns of movement or activity. This is achieved through advanced

algorithms and machine learning techniques that can detect and analyze the position of pixels in the video frame at the

time of an event.
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1. Introduction

The taxonomy of surveillance video anomaly detection (SVAD), consisting of two main groups, is described in Table 1.

Table 1. Taxonomy for anomaly detection in video surveillance.

Learning Algorithms

Supervised learning Statistics-based algorithms

Unsupervised learning Classification-based algorithms

Semi-supervised learning Reconstruction-based algorithms

 Prediction-based algorithms

 Other algorithms

2. Learning

Several Artificial Intelligence (AI) subsets are based on various applications and use cases. This text mainly focused on

Machine Learning (ML) and Deep Learning (DL). DL is a subset of machine learning methods. ML is a powerful

technology that can be applied for anomaly detection. The process varies considerably depending on the problem. The

performance of an ML algorithm may vary depending on the features selected in the dataset or the weight assigned to

each feature, even if the same model runs on two identical datasets . A model may become overfit if it has fewer

features that are only sometimes good. To better comprehend and construct a model using available ML techniques and

data, reviewing and comparing the current solutions is worthwhile. Machine learning (ML) can be divided into three

groups: Supervised Learning (SL), Unsupervised Learning (UL), and Semi-Supervised Learning (SSL).

2.1. Supervised Learning

SL acquires knowledge from pre-existing labeled datasets or “the training set”, then compares the predicted output to the

known labels. A high-level training set is always required to build a model that works effectively, but more is needed to

ensure that the final product will be satisfactory; the training procedure is also a crucial element in creating a reliable

predictor. A classifier model is first developed in SL through training, and after that, it can forecast either discrete or

continuous outputs. The ASL model’s performance, such as accuracy, is typically validated before prediction to

demonstrate its dependability. Additionally, classification and regression techniques can be used to categorize SL tasks .

The training data are first divided into separate categories in the classification technique. It then calculates the probability

of test samples falling into each category and chooses the category with the most votes . This probability represents the

likelihood that a sample is a class member. Credit scoring and medical imaging are examples of typical applications. The
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regression technique uses input factors such as temperature changes or variations in electricity demand to forecast

continuous responses, often in quantity . Forecasting power load and algorithmic trading are examples of typical

applications. While the regression model can calculate the root-mean-squared error, the classification model can quantify

the percentage of accurate predictions. Nevertheless, a discrepancy between the expected and actual values is

acceptable since the output data are continuous.

Several works have been performed with SL. One of the suggestions in this area is presented by the study . They

proposed a unique way to identify fights or violent acts based on learning the temporal and spatial information from

consecutive video frames that are evenly spaced. Using the proposed feature fusion approach, features with many levels

for two sequential frames are retrieved from the first and last layers of the Convolutional Neural Network (CNN) and fused

to consider the action knowledge. They also suggested a “Wide-Dense Residual Block” to learn the unified spatial data

from the two input frames. These learned characteristics are subsequently consolidated and delivered to long-term

memory components to store temporal dependencies. Using the domain adaptation strategy, the network may learn to

efficiently merge features from the input frames, improving the results’ accuracy. They evaluated their experiments by

using four public datasets, namely HockeyFight, Movies, ViolentFlow, and BEHAVE, to show the performance of their

model, which was compared with the existing models. There are several important learning techniques in SL, such the

Hidden Markov Model (HMM) , Support Vector Machine (SVM) , Gaussian Regression (GR) , CNN , Multiple

Instance Learning (MIL) , and Long Short-Term Memory (LSTM) . It is clear that each technique has advantages and

disadvantages in anomaly detection, and it is impossible to say that one technique can solve all problems efficiently.

2.2. Unsupervised Learning

UL groups data by identifying hidden patterns or intrinsic structures. Data input is necessary, but there are no

predetermined output variables. There is neither labeled input data nor a training technique, in contrast to SL. As a result,

it operates independently, and its performance could be more measurable. Although some researchers use the UL

model’s pre-existing labeled data to verify its results, this is only sometimes possible in practice. To conduct an external

evaluation, specialists may need to analyze the results manually.

UL is mostly used for reducing dimensionality and clustering. UL is used in dimensionality reduction to find the dataset’s

linked features so that redundant data can be removed to reduce noise. Using clustering techniques, the clustering

problem allows for the possibility of a sample belonging to more than one cluster or just one. Market research and object

identification are common applications .

One proposed approach in UL is that of . They provided a technique for detecting anomalies in surveillance missions,

including UAV-acquired footage. They combined an unsupervised classification technique called One-Class Support

Vector Machine (OCSVM) with a deep feature extraction technique utilizing a pre-trained CNN. Their quantitative findings

demonstrated that their proposed strategy produces positive outcomes for the dataset studied. The authors in 

extended their previous work by using mobile cameras to assist UAVs when acquiring videos. They added two feature

extraction methods, the Histogram of Oriented Gradients (HOG) and HOG3D. They used the same UL method, which was

OCSVM . They obtained good results based on the used video-obtained datasets. There are many techniques under

UL; PCA  and GANs  are examples of them.

2.3. Semi-Supervised Learning

SSL is a machine learning method that utilizes labeled and unlabeled data to create a classifier. This approach is

particularly useful in situations with a limited amount of labeled data available. The SSL algorithm utilizes the training

procedure described in Supervised Learning (SL) to create a predictor with a small amount of labeled data. The predictor

then categorizes unlabeled samples and assigns each pseudo-labeled sample a confidence rating. This confidence rating

informs the administrator of the prediction’s certainty level. Once all data have been labeled, confident examples are

added to the new training set to update the classifier.

Certain assumptions must be made before training unlabeled examples, such as smoothness and clustering. This is

because unlabeled data are randomly labeled in the prediction process . The anomaly detection (AE) model  is an

important SSL model, as it utilizes labeled and unlabeled data to detect and identify anomalies in a given dataset. Overall,

SSL is an effective method for creating a classifier with a limited amount of labeled data while leveraging the information

present in unlabeled data to improve the accuracy of the classifier.
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2.4. Supervised vs. Unsupervised vs. Semi-Supervised

Supervised learning techniques for SVAD offer several advantages, including the ability to accurately identify and classify

anomalies using labeled data and the ability to identify specific types of anomalies. These techniques are also useful for

detecting anomalies in surveillance and security applications. However, a significant amount of labeled data is required,

and these techniques can be sensitive to environmental changes, affecting their accuracy.

Unsupervised learning techniques for SVAD offer advantages such as not requiring labeled data and the ability to detect

anomalies in real-time. These techniques can also be used to identify patterns in the data that deviate from the norm and

classify them as anomalies. However, unsupervised learning techniques are not able to identify specific types of

anomalies and can also be sensitive to changes in the environment.

Semi-supervised learning techniques for SVAD can use labeled and unlabeled data, allowing for accurate identification

and classification of anomalies. These techniques can also be used to identify specific types of anomalies and detect

anomalies in real-time. However, semi-supervised learning techniques require significant labeled data and can also be

sensitive to environmental changes.

In conclusion, supervised, unsupervised, and semi-supervised learning techniques each offer advantages and

disadvantages when it comes to anomaly detection in SVAD. Each technique has its limitations, and the accuracy of the

results can be affected by changes in the environment. Therefore, the choice of technique will depend on the specific

needs of the application and the availability of labeled data.

3. Algorithms

3.1. Statistics-Based Algorithms

Two main algorithms are used in video anomaly detection: parametric and non-parametric .

Parametric algorithms assume the data follow a specific probability distribution, such as a Gaussian distribution. These

algorithms estimate the parameters of the distribution using the data and then use these parameters to calculate the

likelihood of new data points. One popular parametric algorithm for video anomaly detection is the Gaussian Mixture

Model (GMM). The GMM is a probabilistic model representing a dataset as a mixture of multiple Gaussian distributions.

The algorithm estimates the parameters of the Gaussian distributions using the data and then uses these parameters to

calculate the likelihood of new data points. If the likelihood of a new data point is below a certain threshold, it is

considered an anomaly.

Non-parametric algorithms do not make any assumptions about the distribution of the data. Instead, these algorithms rely

on the empirical distribution of the data, which is estimated using Kernel Density Estimation (KDE) . One popular non-

parametric algorithm for video anomaly detection is the Local Outlier Factor (LOF) . The LOF is a density-based

algorithm that calculates the local density of a data point by measuring the distance to its k-nearest neighbors. The

algorithm then compares a data point’s local density to its neighbors’ density. The data point is considered an anomaly if

the ratio is below a certain threshold. Several studies have been conducted on statistical-based algorithms, some of which

are listed below: Gaussian Mixture Model (GMM), selective histogram of optical flow, Histogram of Magnitude and

Momentum (HoMM), Histogram of the oriented Swarm (HoS), Histogram of Gradients (HoG), Bayesian, Fully-

Convolutional-Network (FCNs)-based models, and Structural Context Descriptor (SCD). Some statistics-based studies

are presented in Table 2.

Table 2. Statistics-based methods.

Methods Summary

HoMM 

The histogram of magnitudes is used to record the motion of objects. The anomalous motion of an object is
represented by its momentum about the foreground region’s occupancy. Feature descriptors for typical
situations are learned in an unsupervised manner using K-means clustering. By measuring the distance
between cluster centers and the test frame’s feature vector, frame-level anomalies are discovered. The
region and anything leaving that region are regarded as anomalous.

 Datasets: UCSD, UMN; Techniques: background subtraction, optical flow, K-means clustering.
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Methods Summary

Novel scheme
based on
SVDD 

Statistical histograms are used to model normal motion distributions. It combines motion detection and
appearance detection criteria to find anomalous objects. They created a method based on Support Vector
Data Description (SVDD), which creates a sphere-shaped boundary around the regular items to keep out
anomalous ones. They took into account a fixed-dimension region, and anything left in that region is
regarded as anomalous.

 Datasets: UCSD, UMN, Subway; Techniques: histogram model, optical flow, support vector data description.

Gaussian
classifier 

Deep autoencoder networks and single-class image-level classification are proposed to detect event
anomalies in surveillance videos.

 Datasets: UCSD, Subway; Techniques: Gaussian classifier, CNN, sparse autoencoder.

CoP 
The method called Consistency Pursuit (CoP) is based on the idea that normal samples have a very high
correlation with each other, can span low-dimensional subspaces, and therefore, have strong mutual
consistency with a large number of data points.

 Datasets: Hopkins155; Techniques: robust PCA, saliency map.

3.2. Classification-Based Algorithms

One of the most-widely used methods for SVAD is classification-based methods, which involve training a classifier to

distinguish between normal and anomalous video frames or segments.

The first step in using classification-based methods for video anomaly detection is to extract features from the video

frames. These features can include spatial and temporal information, such as color, texture, motion, and object shape.

Several feature extraction techniques have been proposed in the literature, including hand-crafted features, such as the

Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature Transform (SIFT), as well as in-depth learning-based

features, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

Once the features have been extracted, the next step is to train a classifier to distinguish between normal and anomalous

video frames or segments. Several classifiers have been proposed in the literature, including traditional machine learning

classifiers, such as Support Vector Machines (SVMs), random forests, k-Nearest Neighbors (kNNs), and deep learning-

based classifiers: CNNs and RNNs. The choice of the classifier will depend on the specific application and the type of

features that have been extracted.

After the classifier has been trained, it can classify new video frames or segments as normal or anomalous. The classifier

will output a score or probability for each frame or segment, indicating the likelihood that it is normal or anomalous. A

threshold is usually set to make a final decision, and any frames or segments with a score below the threshold are

considered anomalous.

One of the main advantages of classification-based methods for video anomaly detection is that they can be fine-tuned to

a specific application by selecting appropriate features and classifiers. However, one of the main challenges is that these

methods require a large amount of labeled training data to be effective. Additionally, they may be unable to detect

anomalous events significantly different from the training data .

Several classification algorithms have been proposed in the literature on data science, which can be considered the most

common in the field, and they were discussed in detail in . Some commonly used algorithms are summarized as

follows.

Support Vector Machine (SVM) is a widely used classification, regression, or other application method. An SVM

generates a single hyperplane or a set of hyperplanes in a high or endless space. The goal is to separate the two classes

using a hyperplane that reflects the greatest separation or margin. The larger the margin, the smaller the generalization

error of the classifier is.

k-Nearest Neighbors (kNN) is a non-parametric supervised learning technique, also referred to as a “lazy learning”

method. It maintains all occurrences that match the training set in an n-dimensional space, rather than focusing on

building a large internal model. kNN uses data and employs similarity metrics to categorize new data points.

Decision Tree (DT) is a popular non-parametric SL approach. Both the classification and regression tasks are performed

using DT learning techniques. The DT is a recursive operation; it starts with a single node and branches into a tree

structure.
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Some classification-based studies are shown in Table 3.

Table 3. Classification-based methods.

Methods Summary

One-class
classification

A histogram of optical flow orientation is integrated with a one-class SVM to identify abnormal events.
Modeling high-density scenes may be performed quickly and precisely using optical flow techniques.
Pattern identification is performed after feature extraction to discriminate between regular and irregular
activities.

 Datasets: UMN; Techniques: SVM, optical flow, histogram of optical flow orientation.

Asymptotic
bounds 

The crowd escape anomaly is detected using statistical and deep learning algorithms that directly evaluate
the pixel coordinates.

 Datasets: UCSD, Avenue, ShanghaiTech; Techniques: YOLOv3, GAN-based frame predictor, kNN.

Decision tree To detect abnormalities from video surveillance while precisely estimating the start and end times of the
anomalous event, a decision-tree-enabled solution leveraging deep learning was created.

 Datasets: ImageNet, COCO; Techniques: decision trees, YOLOv5.

AE with kNN 
A new approach combines an AE-based method with single-class deep feature classification. An AE is
trained using normal images; then, anomaly maps are embedded using a pre-trained CNN feature extractor.
A one-class classifier with kNN is trained to calculate the anomaly score.

 Datasets: MVTec; Techniques: convolutional autoencoder, high-density embedding, one-class
classification.

IGD 

There is a high probability of overfitting as abnormal datasets are insufficient. The Interpolated Gaussian
Descriptor (IGD) method, an OCC model that learns a one-class Gaussian anomaly classifier trained with
inversely interpolated training samples, is proposed to solve this problem. The IGD is used to learn more
meaningful data descriptions from typical normal samples. The crowd escape anomaly is detected using
statistical and deep learning algorithms that directly evaluate the pixel coordinates.

 Datasets: MNIST, Fashion MNIST, CIFAR10, MVTec AD; Techniques: Gaussian classifier.

Out of
distribution 

A classifier that is simultaneously trained to give the GAN samples less confidence is used in conjunction
with a GAN. Samples from each test distribution of anomalies are used to arrange the classifier and GAN.

 Datasets: CIFAR, tree-enabled, LSUN; Techniques: DNN, GAN, Kullback–Leibler, Gaussian distribution.

3.3. Reconstruction-Based Algorithms

Reconstruction-based methods operate under the presumption that normal data can be integrated into a lower-

dimensional domain where normal samples and anomalies are represented in various ways .

An Autoencoder (AE) is a feed-forward neural network that includes an encoder and a decoder structure . The

objective is to train the network to capture the important parts of the input data and learn a lower-dimensional

representation of the higher-dimensional data. The Variational Autoencoder (VAE) is a type of AE that includes an

encoder network and a decoder network. The encoder network maps the input data to a low-dimensional latent space,

while the decoder network maps the latent space back to the original data space. In this method, the VAE is trained on

normal videos. The trained model is then used to reconstruct the input video, and the reconstruction error is calculated.

Anomalies are detected by thresholding the reconstruction error. Any frame with a reconstruction error above a certain

threshold is considered anomalous. The Convolutional Autoencoder (CAE) is also a type of AE consisting of

convolution, deconvolution, pooling, and unpooling layers. The first two layer types may be found in the encoding step,

whereas the others may be found in the decoding stage . The Variational Autoencoder (VAE) is another type of AE

that incorporates convolution, deconvolution, pooling, and unpooling layers. The first two layer types are used in the

encoding step, while the others are used in the decoding stage .

Reconstruction-based methods are a variation of adversarial generative methods. Generative-Adversarial-Network
(GAN)-based networks consist of two neural networks: a Generator (G) and a Discriminator (D) . The generator

network creates new examples in the target domain by mapping examples from the source domain to the target domain.

The discriminator network then tries to distinguish between examples created by the generator and examples from the

target domain. Through this process, the generator network learns to create examples indistinguishable from examples in

the target domain.
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In summary, reconstruction-based methods such as AEs and GANs have shown promising results in anomaly detection

tasks by mapping normal data into a lower-dimensional domain and identifying anomalies based on the reconstruction

error. Variants of AEs, such as Conv AEs and variational AEs, have also been utilized in this domain. These methods are

part of a larger field of adversarial generative methods, including generative adversarial networks.

Some reconstruction-based studies are shown in Table 4.

Table 4. Reconstruction-based methods.

Methods Summary

ST-AE 
The spatiotemporal AE comprises one encoder and two decoders of 3D convolutional layers. It employs
parallel training of decoders with monochrome frames, which is noteworthy compared to the distillation
process.

 Datasets: Traffic, UCSD, Avenue; Techniques: CNN, autoencoder.

AMDN 

The appearance and motion DeepNet model employs AEs and a modified two-stream network with an
additional third stream to improve detection performance. The two-stream method has two major
drawbacks: the requirement for a pre-processing technique, such as optical flow, which may be costly for
real-world applications, and multiple networks for inference.

 Datasets: Train, UCSD; Techniques: one-class SVM, optical flow.

GMFC-VAE 
The Gaussian mixture fully convolutional-variational AE uses the conventional two-stream network
technique and uses a variational AE to enhance its feature extraction capability. This method estimates the
appearance and motion anomaly score before combining the two clues to provide the final detection results.

 Datasets: Avenue, UCSD; Techniques: convolutional autoencoder, Gaussian mixture model.

OF-ConvAE-
LSTM 

This method uses the convolutional AE and long short-term memory to detect anomalies. The framework
produces the error function and reconstructed dense optical flow maps.

 Datasets: Avenue, UCSD; Techniques: convolutional autoencoder, LSTM, optical flow.

Temporal
cues 

A conditional GAN is trained to learn two renderers that map pixel data to motion and vice versa. As a result,
normal frames will have little reconstruction loss, while anomalous frames will have significant
reconstruction loss.

 Datasets: Avenue, ShanghaiTech; Techniques: GAN, LSTM, optical flow.

Ada-Net An attention-based autoencoder using contentious learning is proposed to detect video anomalies.

 Datasets: UCSD, Avenue, ShanghaiTech; Techniques: GAN, autoencoder.

Adversarial
3D CAE 

A 3D CAE-based competitor anomalous event detection method is proposed to obtain the maximum
accuracy by simultaneously learning motion and appearance features. It was developed to explore
spatiotemporal features that help detect anomalous events in video frames.

 Datasets: UCSD, Avenue, Subway, ShanghaiTech; Techniques: convolutional autoencoder.

Conv-AE + U-
Net 

A two-stream model is created that learns the connection between common item appearances and their
related motions. A single encoder is paired with a U-net decoder to predict motion and a deconvolution
decoder that reconstructs the input frame under the control of the lp�� reconstruction error loss terms
using a single frame as the input.

 Datasets: UCSD, Avenue, Subway, Traffic; Techniques: convolutional autoencoder.

3.4. Prediction-Based Algorithms

Prediction-based techniques can identify anomalies by assessing the difference between a feature descriptor's expected

and actual spatiotemporal properties . These models assume that normal activities are predictable, and any deviation

from the prediction indicates an anomaly. They typically use a Recurrent Neural Network (RNN) to predict the next frame

in the sequence, given the previous frames. During training, the model minimizes the difference between the predicted

frame and the ground truth. Here are some commonly used algorithms:

Long Short-Term Memory (LSTM) is the most widely used neural array model, combining the principles of the forget

gate, entry gate, and exit gate and successfully avoiding back-propagation errors caused by vanishing/exploding

gradients.

The convolutional LSTM is an LSTM variation that addresses the precipitation nowcasting problem. In contrast to LSTM,

convolution operations are employed to calculate the feature maps instead of matrix operations, resulting in a significant
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decrease in the count of the training parameters of the model .

Another prediction-based approach is the Vision Transformer (ViT) . The ViT model combines CNNs and

transformers to extract spatiotemporal features from video data and model the temporal relationships between these

features. This approach effectively captures long-term dependencies in the video data and is especially useful for

detecting anomalies.

In summary, RNN-based prediction techniques are effective at detecting anomalies by comparing the expected and actual

spatiotemporal properties of a feature descriptor. LSTM is the most widely used and successful neural array model, while

the convolutional LSTM and ViT are variations that address specific problems.

Some prediction-based studies are shown in Table 5.

Table 5. Prediction-based methods.

Methods Summary

FFP Spatial and motion constraints are used to estimate the future frame for normal events in addition to
density and gradient losses.

 Datasets: UCSD, ShanghaiTech, Avenue; Techniques: GAN, optical flow.

Deep BD-LSTM A model combining CNN and bidirectional LSTM is proposed to recognize the human movement in
video sequences.

 Datasets: YouTube 11 Actions, UCF-101, HMDB51; Techniques: LSTM, CNN.

LSTM By using the effective gradient and quadratic programming-based training methods, the parameters
of the LSTM architecture and the support vector data description algorithm are trained and optimized.

 Datasets: Avenue, Subway, ShanghaiTech, UCSD; Techniques: LSTM, one-class SVM.

SSPCAB 

A Self-Supervised Predictive Convolutional Attentive Block (SSPCAB) is proposed, which can be
easily incorporated into various anomaly detection methods. The block acquires the ability to
recreate the masked area utilizing contextual information for each site where the dilated
convolutional filter is applied.

 Datasets: Avenue, MVTec AD, ShanghaiTech; Techniques: CNN, convolutional attentive block.

Spatiotemporal
feature extraction 

A neural network built with transaction blocks, including dictionary learning, feature learning, and
sparse representation, is proposed. A novel long short-term memory was also proposed and
reformulated using an adaptive iterative hard-thresholding technique (LSTM).

 Datasets: UCSD, Avenue, UMN; Techniques: LSTM, RNN-based sparsity learning.

ISTL 
An Incremental Spatiotemporal Learner (ISTL) model is proposed to address anomaly detection and
localization's difficulties and limitations to keep track of anomalies' changing character through
active learning using fuzzy aggregation.

 Datasets: UCSD, Avenue; Techniques: convolutional LSTM, fuzzy aggregation.

Residual attention-
based LSTM 

Using a lightweight CNN and an attention-based LSTM for anomaly detection reduces the time
complexity with competitive accuracy.

 Datasets: Avenue, UCF-Crime, UMN; Techniques: residual attention-based LSTM.

CT-D2GAN A Conv-transformer is used to perform future frame prediction. Dual-discriminator adversarial
training maintains local consistency and global coherence for future frame prediction.

 Datasets: UCSD Ped2, Avenue, ShanghaiTech; Techniques: GANs; transformer; CNN.

ViT-based framework Using a ViT model for anomaly detection involves processing a single frame as one patch. This
approach yields good performance on the SVAD task while maintaining the advantages of the
transformer architecture.

 Datasets: UCSD Ped2, Avenue, ShanghaiTech; Techniques: vision transformer.

3.5. Other Algorithms

Two clustering methods are available. Their argument is based on the idea that normal data are clustered, whereas

anomalous data are not  connected to any cluster. The second type is predicated on the idea that, whereas anomalies

belong to tiny clusters, typical data instances belong to massive or dense clusters. Fuzzy traffic density and flow are built

using fuzzy theory to identify abnormalities in complicated traffic videos . Heuristic techniques intuitively make
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decisions regarding anomalies based on feature values, geographical locations, and contextual data . However, many

real-world systems do not rely only on one technology. Using a lightweight CNN and an attention-based LSTM for

anomaly detection reduces the time complexity with competitive accuracy.

3.6. Analysis of Algorithms

Statistics-based algorithms assume that normal behavior follows a certain statistical pattern, and any deviation from this

pattern is considered an anomaly. They are simple and efficient and can detect real-time anomalies without requiring

much training data. However, they may not be effective at detecting novel anomalies or anomalies that do not follow a

statistical pattern.

Classification-based algorithms use machine learning techniques to classify behavior or events as normal or abnormal

based on labeled training data. They can detect novel anomalies and adapt to changing environments with high accuracy.

However, they require a large amount of training data, and the labeling process can be time-consuming and costly.

Reconstruction-based algorithms reconstruct normal behavior or events and compare them to the actual behavior or

events to detect subtle anomalies. They do not require labeled training data, but they can be computationally expensive

and unsuitable for real-time anomaly detection.

Prediction-based algorithms use machine learning techniques to predict future behavior or events based on past behavior

or events. Any deviation from the predicted behavior or events is considered an anomaly. They can detect anomalies

before they occur, which can be useful in preventing security threats or safety issues. However, they require a large

amount of training data, and the accuracy of the predictions may decrease over time as the environment changes.

In conclusion, the selection of the algorithm depends on the specific application and requirements. Statistics-based

algorithms are simple and efficient but may not detect novel anomalies. Classification-based algorithms have a high

accuracy rate but require a large amount of training data. Reconstruction-based algorithms can detect subtle anomalies

but can be computationally expensive. Prediction-based algorithms can detect anomalies before they occur but require a

large amount of training data, and the accuracy of predictions may decrease over time. Table 6 shows an overview of the

algorithms.

Table 6. Overview of algorithms.

Algorithms Strengths Weaknesses

Statistics-based
Generally, they are suitable for real-time
applications as they are simple and
computationally efficient.

They cannot detect subtle or complex anomalies,
such as changes in spatial or temporal
relationships.

 
Subtle or complex anomalies, such as those
involving spatial or temporal relationship changes,
cannot be detected.

False alarms may also occur when the data
distribution deviates from a Gaussian distribution.

 High-dimensional datasets can be handled, and
robustness to noise can be exhibited.  

Classification-
based

Anomalies can be learned to be detected based on
labeled training data, allowing them to adapt to
changes in the data distribution over time.

Generally, they could be improved for real-time
applications, being more computationally
expensive than statistics-based algorithms.

 High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of labeled training data is also
required, which can be difficult and time-
consuming.

  
Only the anomalies encountered in the training
data can be detected, and new unseen anomalies
cannot be detected.

Reconstruction-
based

A compact representation of normal data can be
learned, allowing subtle or complex anomalies to
be detected.

They are generally less well-suited for real-time
applications as they are more computationally
expensive than statistics-based algorithms.

 High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of normal data for training is also
required, which can be difficult to obtain in some
scenarios.

  They are not robust to noise, and false alarms may
occur when the data are noisy or corrupted.
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Algorithms Strengths Weaknesses

Prediction-based
Temporal dependencies in the data can be
leveraged to detect anomalies, making them well-
suited for time series data.

They are generally less well-suited for real-time
applications as they are more computationally
expensive than statistics-based algorithms.

 High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of normal data for training is also
required, which can be difficult to obtain in some
scenarios.

  Anomalies involving spatial or temporal
relationship changes may be difficult to detect.

  
They do not possess robustness to noise, and
false alarms can be produced when the data are
noisy or corrupted.
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