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The continuously increasing number of mobile devices actively being used in the world amounted to approximately

6.8 billion by 2022. Consequently, this implies a substantial increase in the amount of personal data collected,

transported, processed, and stored. An integrated personal health data management system was designed and

implemented, which considers data-driven software and hardware sensors, comprehensive data privacy

techniques, and machine-learning-based algorithmic models. 

data-driven  soft sensors  deep learning

1. Data Acquisition through Mobile Devices and Sensors

Mobile devices provide a comprehensive set of functional features, which may be used for the proper processing

and collection of related data. As an example, modern smartphones are equipped with powerful hardware

components, such as multicore processors, sophisticated mobile graphical processing units (GPU), several

gigabytes of memory, and a comprehensive set of built-in sensors. Additionally, it is possible to add new sensors

using the wireless and even wired connection features of these mobile devices. The following subsection presents

relevant contributions, which pertain to the design and implementation of full privacy-preserving data channels.

Moreover, the possibility to conduct arithmetic operations directly over the encrypted data is discussed.

1.1. Remarks Concerning Full Privacy-Preserving Data Computation

The authors of  reported a verifiable data processing model that is related to encrypted input data in connection

with mHealth (mobile health) software systems. The algorithmic scheme that is designated as accumulation tree

was reported in , which verifies the results of geographical proximity tests. Furthermore, ref.  described the

results that relate to verifiable computation use cases, which pertain to encrypted input data. It is important to

mention that most of the existing approaches consider data processing at the level of the client devices. This

approach does not apply to integrated data management systems which consider personal private data.

The advantages of cloud-based data storage and processing are obvious . However, the design of the proper

data security approaches determines a significant problem that generates conceptual issues to the cloud service

providers .
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The implied service providers aim to design and deploy layered security mechanisms. Nevertheless, the plain text

data may still be accessed and used through proper intrusion techniques. Consequently, data must be encrypted

before transmission to the respective external data processing modules. The relevant reviewed papers suggest a

significant computation overhead connected to the mobile client devices . This is especially relevant for the

personal mobile devices, which collect medical data processed by proper integrated software systems. There are,

however, approaches  that do not specify proper data privacy mechanisms  when the data are transmitted

through the respective data channels. The proper management of personal health information (PHI) data refers to

ethical principles and formal regulations . Thus, it is necessary to design and implement integrated data

processing systems that consider all the relevant constraints. The authors of  described the general

architectures and the life cycles of cloud-based data processing services.

Ever since C. Gentry first described the concept of homomorphic encryption in 2009 , significant research has

focused on improving  this computationally expensive data processing scheme. Consequently, many relevant

real-world use cases pertain to the use of proper powerful hardware resources . Moreover, the initial

homomorphic encryption approaches were particularly computationally expensive relative to the respective real-

world use cases . Furthermore, the algorithmic apparatus was improved through multiple development phases

. Some papers have reported improvements to the computational efficiency of homomorphic encryption. For

example, refs.  expanded the initial set of algorithms. The algorithmic model presented in  and

also in ref.  may be used during the design of data processing components that are part of relevant integrated

data management systems . Furthermore, it is important to note the papers  that are connected to the full

scope of ubiquitous systems. Thus, ref.  described a software application defined by two functional

requirements. First, the system is able to conduct the semantic analysis of data that are produced by user

interactions, which are connected to various contextual parameters that determine usual activities of daily living

(ADL). This has the goal of determining the relevant behavioral patterns that define complex activities. Moreover,

the software system is based on an algorithmic routine that supports the decision-making processes. Furthermore,

a relevant contribution is reported in papers . Additionally, ref.  described a general architecture of a

ubiquitous system that is compatible with general medical use case scenarios and data storage models, such as

the ones that are described in papers . Moreover, software systems defined by interesting architectural

models are presented in papers , and also . It is significant to note that the authors of papers , and

also  propose technical solutions that are relevant for the implementation of distributed personal data processing

systems, which use wireless data transfer channels. Furthermore, the survey effort that is included in  created

interesting perspectives on related scientific problems. Moreover, the authors of  proposed interesting data

transmission models relative to next-generation radio networks, while  described a versatile data communication

channels management system, which can be used in a variety of real-world use case scenarios, including vehicular

ad hoc networks (VANET).

Moreover, it is important to mention the contributions that were described in , considering that they presented

one of the few existing integrated personal data management systems, which fully implements data protection

mechanisms considering all the relevant stages: data collection, transportation, processing, and long-term storage.

[7]

[8] [9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17][18][19][20] [21][22]

[23]

[24] [25][26]

[27]

[28][29] [30]

[31][32]

[33][34] [35][36] [37][38]

[39]

[40]

[41][42]

[43]

[44][45]



Deep-Learning and Privacy Techniques for Data-Driven Soft Sensors | Encyclopedia.pub

https://encyclopedia.pub/entry/42105 3/26

The survey that was conducted suggests the following requirements for any suitable integrated personal data

management system.

The collection of personal data is conducted using mobile client devices.

The data is transferred to central data processing components.

The data are properly and securely stored, and privacy-preserving data is processed.

The system should be specified considering a flexible and decoupled system architecture which would allow for

an efficient extension and re-structuring of the system in the future.

The legal and formal requirements that are formalized by American and European regulations are also

considered.

The efficient integration of the system in the target software frameworks considers the specifics of the

respective use cases, as well as all the technical and legal requirements.

1.2. Analytical Remarks Concerning Similar Contributions

Thus, ref.  relates to a comprehensive review of similar data privacy mechanisms, with a focus on e-Health

software systems. Relevant advantages and disadvantages of reviewed models are analyzed. The papers were

selected considering the similarity that was observed in the reviewed literature. The authors also describe the

general features of a technical standard, which may define an e-Health system. The paper also includes a

taxonomy of cloud-based models, while the relevant personal data privacy and security requirements enforced by

the Health Insurance Portability and Accountability Act (HIPAA)  are analyzed. It is important to note that the

authors describe a secure and dependable system architecture, which is compatible with electronic health

scenarios that could guarantee efficiency, reliability, and a properly regulated access framework to health

information. The main drawback of this architecture is its inability to deploy on distributed and structurally scalable

infrastructures. Additionally, only standard asymmetric encryption models are implemented, which do not provide

the necessary degree of health data privacy.

The general scope of cloud-based healthcare computing has modified real-world healthcare in several ways. Cloud

infrastructures provide a discernible advantage in the scalability of service, and the possibility to alter the related

computational and data storage resources. Additionally, other articles examine the implied security and data

privacy-preserving mechanisms. This is an important aspect of the overall research problem, as it determines

important legal and technological aspects that should be evaluated. In this respect, ref.  examines several

scientific approaches that miss at least some of the necessary technical features. Thus, it is important to mention

the end-to-end private data transmission channels, the mandatory scalability, and the architectural compatibility of

diverse technical platforms and frameworks, which concern the implied client and back-end (server) components.
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The obvious advances in the field of information and communication technology naturally relate to an improved

economic environment that offers higher-value services to consumers and businesses. The health sector benefits

from this progress. Although the cloud-based system architectures provide clear advantages, the remaining

security and data privacy issues should still be considered and addressed. Thus, ref.  presented a distributed

system that considers various data security levels and data encryption models. This heterogeneous architectural

structure implies administrative, functional, and data security problems that suggest that the reported approach is

not suited for real-time deployments of large-scale medical data processing systems.

The continuous development of Internet of Things (IoT) as a theoretically and practically relevant paradigm, which

has occurred during the past twenty years, implies that novel personal data management approaches may be

developed. Thus, ref.  presented an important problem, which concerns the fully secure preservation of personal

data privacy. The article proposes an access control mechanism for cloud-based data that follows a certificate-

based authentication model. The authors describe the methodology of the approach using the results of

experimental evaluation processes. This suggests an apparent enhancement of the overall system’s security and

performance through the optimization of the time needed to specify and implement the data and service access

permissions. Nevertheless, the proposed approach does not offer the necessary scalability or end-to-end private

data transmission channels between the client devices and the back end data processing components.

Significant progress has been made in the scope of cloud-based healthcare applications in the past ten years,

particularly due to the implied remote access features, among other advantages. It is important to note that the

reviewed literature demonstrates the resistance of certain end users to the adoption of the new technologies,

particularly in developing nations .

Attribute-based encryption (ABE) models represent an interesting use case in healthcare. Patients encrypt their

electronic health record (EHR), assign the attributes, and send them to the cloud. Healthcare professionals receive

the encrypted EHR corresponding to their field of expertise from the cloud-based system. Decryption of the EHR

data presumes that the medical personnel receive the secret keys from the key generation center (KGC). Thus, the

KGC stores the secret keys of all the encrypted EHR records. Consequently, it is possible to decrypt the relevant

patients’ records, which represents a security issue. A decentralized ABE scheme addresses this issue, but it

implies significant computation and communication costs. Furthermore, unauthorized medical employees may be

able to read the patients’ private EHR data. Additionally, the privacy of the KGC’s secret keys and the doctor’s

attribute privacy determine relevant research aspects. Thus, ref.  presented a cloud-based privacy-preserving e-

health (CP2EH) scheme, which addresses the issues of unauthorized access to patient records and the proper

management of the doctor’s attribute privacy relative to an ABE scheme. The presented model includes the

oblivious transfer (OT) and zero-knowledge proof (ZKP) protocols in the centralized ABE scheme. Thus, the OT

protocol ensures the privacy of the secret keys and the doctor’s attribute. Despite the reported advantages, the

system is selective concerning the accepted data acquisition devices. Moreover, it is compatible with only certain

software frameworks, it does not scale well, and it does not implement end-to-end secure data transmission

channels.
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The authors in  presented an attribute-based encryption (ABE) access control model. This enforces controlled

and possibly multi-level access delegation policies. Moreover, the authors evaluate the possibility of deploying such

a system in an e-health environment with the goal of safely sharing EHR data of the patients enrolled in the

system. The authors assert that the proposed mechanism is safe from some plaintext attacks and from attacks

based on attribute collusion .

2. General Mobile Collection of Sensitive Data

Mobile devices possess the hardware capabilities needed to facilitate general data collection and processing.

These include powerful multicore central processing units (CPU), graphical processing units (GPU), and random

access memory (RAM) which sustain powerful and versatile operating systems. The mentioned hardware and

software features support efficient data sensing and collection operations, together with the usual smartphone core

functions.

Consequently, the built-in mobile sensors are able to collect data considering an adequate frequency for the data

acquisition interval and for the private data categories.

The remarks are applicable to many types of mobile wearable devices, such as smartwatches, which can be

assimilated to the wider scope of Internet of Things (IoT) devices, as long as they are connected to the Internet or

are linked to devices that are directly connected to the Internet . These devices are rapidly becoming capable of

performing complex measurements, and even local data analysis processes . In principle, mobile device

manufacturers implement and provide the required mobile applications, which can be installed on their wearable

devices. Nevertheless, although these mobile applications are adequate for general use case scenarios,

specialized applications are required to sustain specific real-world scenarios.

Motion sensors are designed to measure both the rotational and acceleration forces over the three axes of the

related device. Thus, the hardware motion sensors keep track of the angular velocity and acceleration, and the

software sensors may produce an output according to either a continuous or an event-driven pattern. Moreover, the

position sensors imply the measurement of changes in the Earth’s magnetic field related to the actual physical

orientation, while environmental sensors are typically activated by an event and return a value measurement in the

form of one scalar. These sensors may be configured to return continuous measurements, which may attain a

frequency of approximately 200 Hz, while their power consumption is still kept at a low level .

Certain measurements that discern biological and physiological parameters are supported on particular mobile

devices due to specialized health sensors. As an example, many mobile devices, including smartwatches, feature

optical sensors used to detect the changes in the volume of the blood flowing through the arteries. Consequently,

physiological heart parameters are evaluated. Additionally, studies that pertain to other health problems, such as

sleep disorders in the scope of polysomnography, also use sensors .
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Data generated by user interaction with a touchscreen can be quantified by the number of “keystrokes”  or by

analyzing the touch data generated by the user . Considering the former situation, the virtual keystrokes are

recorded, and the timestamp and pressure data are also logged for each keystroke. The acquired data allow

analysts to discern even more complex features, such as the time between keystrokes, the time allocated for touch

and hold operations, and so on . Supplementary to the actual keystrokes, modern touchscreen panels

significantly expanded the user interaction area, which includes the screen zones that are sensitive to user touch

operations. Thus, it is possible to precisely determine the location of the touch points using a coordinate system

relative to the X and Y coordinates of the screen. Additionally, all of the other usual gestures, such as pinch, tap,

swipe, multitouch, and more advanced user interaction parameters, such as angle, velocity, trajectory, and

acceleration, can be extracted .

Data connections represent a basic but fundamental aspect of mobile devices that imply the implementation and

full or partial compatibility with a vast set of network protocols. The networked data connections generate private

data patterns concerning the user’s daily patterns. Consequently, they can support the profiling of human

behaviour and the acquisition of related sensitive personal data. Considering that the 5G radio standard is currently

during its early stages of commercial deployment and that the 6G radio standard is under development, it can be

asserted that the improved data transfer rates and the significantly lower latency values will expand the functional

capabilities of machine-to-machine (M2M) communications. This should essentially increase the research and

commercial relevance of mobile devices .

3. Real-World Sensors Use Case Scenarios

The two mainstream mobile operating systems, Android and iOS, initially offered less than 500 applications for

download in their application stores. Currently, Google Play, which represents the Android applications store,

includes over 3.5 million applications, while Apple’s App Store offers approximately 2.2 million applications. It is

also interesting to note that Amazon App store contains approximately 500,000 applications . The extensive

range of applications cover various use case scenarios, the most relevant of which are discussed in the following

paragraphs.

3.1. User Authentication Systems

Considering the mainstream user authentication systems, legitimate users are required to provide a secret token,

such as a password or a personal identification number (PIN) code. This authentication model is commonly known

as “what you know”. Moreover, there are authentication systems based on certain physical items, such as public

key infrastructure (PKI) cards, which are known as “what you have”. Additionally, other authentication systems

consider users’ physical features, such as fingerprints or geometry of the eyes, to perform the authentication. This

is known as the “what you are” paradigm .

Biometrics are common and fundamental instruments of mobile authentication systems. The biometrics may

belong to both physiological and behavioral categories . Nevertheless, using such authentication models implies
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that the device remains unlocked and accessible, and any unauthorized access is possible. This shortcoming may

be averted through continuous authentication schemes relative to mobile devices, which use behavioral biometric

authentication mechanisms . Thus, the biometric data are continuously collected through a passive model during

normal use of the mobile device, which ensures that the user’s physical features correspond to those of the

legitimate owner. Nevertheless, several logical or environmental features, such as scenarios, modalities, or

environmental traits, may adversely influence the accuracy of mobile biometric systems . Thus, the literature

reports hybrid solutions, which combine background sensors , touchscreen devices , and network

information . This supports the development of higher-accuracy continuous authentication systems, which are

based on behavioural biometric mechanisms.

3.2. Fitness and Healthcare Systems and Services

Mobile applications and devices play an important role in the healthcare sector. Thus, “mHealth” (mobile health) is

a concept referring to a subset of eHealth that encompasses medical and public health procedures supported by

mobile devices. Mobile applications support the general healthcare processes. Thus, patients may avail

themselves of improved and more efficient services regarding acute and chronic conditions .

Mobile applications can represent real-world use cases, which are capable of analyzing body postures and

generating reports concerning mental disorders . They may also monitor medical conditions, such as Parkinson

disease, stress, dementia, among others . Furthermore, mobile health applications may support the

improvement of a healthy lifestyle. Thus, a variety of mobile devices, such as mobile phones and smartwatches,

are used to track the intensity of the measured physical activity, including all the relevant physiological parameters

.

Additionally, existing scientific studies report integrated mHealth and eHealth software systems that support the

collection of personal health data using mobile and wearable devices, the processing of the data components, the

format of the encrypted data to conduct arithmetic operations, and secure-long term personal health data storage.

This type of full privacy preserving approach, which relates to homomorphic encryption and virtualized 5G data

channels, was described in .

3.3. Services Based on Location Data

Mobile devices fetch geolocation data using several sources, including the Global Positioning System (GPS)

hardware devices. These data are used by mobile applications to determine the geographical position of the users

for a variety of purposes, such as navigation hints data or targeted advertising . The applications that consider

geolocation data (location-aware applications) belong to the realm of the context awareness paradigm .

Moreover, radio protocols used to transmit data short distances, such as Wi-Fi (Wireless Fidelity) and Bluetooth,

allow the mobile devices to exchange data with neighbouring devices and consequently use them for their

purposes. This approach may be used to specify a semantic context, which is determined by the immediate

environment. As an example, the contribution that is reported in  described the specification and implementation
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of virtual tours in museums, which would provide relevant information to the visitors based on the neighbourhood of

the visitors’ actual position in the museum. Furthermore, interesting relevant aspects may also be studied in .

3.4. Remarks Concerning Other Relevant Use Cases

Considering the mainstream use cases, background sensors improve the end users’ experience in various ways.

As an example, the determination of a mobile device’s position is facilitated by the background sensors, which

implement the automatic change of the screen orientation. Obviously, data generated by the light sensors support

the automatic adjustment of the screen brightness. Moreover, the proximity sensor manages the screen lock or

unlock states in different situations, for example when placing a phone call. Another interesting use case is

represented by the augmented reality (AR) applications in fields such as entertainment, commerce, and navigation

. The AR applications rely essentially on the data generated by the background sensors.

The ubiquity of modern mobile devices allows for more complex but useful real-world use case scenarios, such as

mobile participatory sensing . Thus, particular users voluntarily agree to share their devices to collect data that

are relevant for the analysis of various aspects of the implied reality. This mediates the collection of relevant data,

which are consequently used to assess, measure, and map various phenomena through a crowd-sourced

participatory manner . These use case scenarios include, among others, monitoring urban noise and pollution

levels, monitoring urban cleanliness levels, and monitoring urban road and traffic conditions .

4. Proper Management of Sensitive Private Data

The automated management of data collected through mobile device use involves interaction with an appreciable

amount of sensitive private data. It is important to note that some mobile sensors, such as GPS hardware

components, microphones, and cameras, are especially difficult to tamper with, as they require special access

permissions. Nevertheless, other mobile sensors, devices, or resources, such as the touchscreen, accelerometer,

and networking data logs, require a lower level of access permission. Additionally, these data may be used to

create a backdoor to sensitive personal data, considering that they can be sufficient to re-identify a particular

individual through attributes, such as personal health data, particulars of daily routines, or demographic data.

The intimate nature of sensitive personal data requires the design and implementation of particular secure data

management mechanisms. The most defining trait of this type of data relates to its uniqueness relative to the

respective individuals. This is particularly relevant in relation to biometric data. Considering the wider scope of

biometrics research, the main research and development challenges are represented by the mechanisms for

storing personal data, the administrator or owner of the implied software and hardware data processing system,

and the biometric features used to perform the authentication. Furthermore, the type and time reliability of the

considered biometric features also represent a relevant question . The next subsections discuss on the most

relevant types of sensitive personal data that can be generated by the mobile devices’ sensors.

4.1. Demographic Data
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4.1.1. Sensors That Detect Movement

The authors in  considered the determination of a user’s age range using data generated by an accelerometer.

This was achieved during an experiment that involved performing a preset series of taps on a touchscreen relative

to several contact spots. The experiment used the k-nearest neighbor (k-NN) algorithm, which produces an

accuracy of 85.3%. Moreover, the authors of  reported an algorithmic mode that discriminates an adult from a

child through behavioural particularities captured by the mobile motion sensors. The main hypothesis states that

children, who have smaller hands, are shakier. The algorithmic model produced an accuracy of 96% through the

random forest (RF) approach. The scientific contribution reported in , obtained the gender of the end users by

analyzing their their walking routines data, which were collected by mobile motion sensors. The proposed model

produced an accuracy of 76.8% using support vector machines (SVMs), and bagging algorithms. Moreover, the

authors of  described an approach for recognition of gender data using gait (walking) data, which were collected

by the mobile sensors. The reported accuracy was 96.3%, and the process used the bagged tree classifier.

The authors of  reported an automatic gender recognition algorithm, which uses the data collected by a

gyroscope and accelerometer. The generated accuracy was 80% using the principal component analysis (PCA)

technique. Moreover, the authors of  determined gender and age data using hidden Markov models (HMMs).

Thus, the authors set up a competition which compared data collected by an accelerometer with gyroscope data

using the respective mobile devices. The reported error percentage was 24.23% relative to the gender and 5.39%

relative to age. The notable progress in the field of deep learning enhanced the results, as was the case with the

findings described in . Thus, the authors mentioned an accuracy of 94.11%, which was obtained through the

analysis of gait (walking) data as it related to gender classification. The authors used long short-term memory

(LSTM) and recurrent neural networks (RNNs) which are suitable for capturing the temporal dependencies that

defined by the analyzed data.

4.1.2. Touchscreen Data

In , the authors categorized end users in two categories, adults and children, based on the mechanics of tap and

swipe gestures. The authors describes an active user detection (AUD) algorithm, which generates an accuracy of

97%. Furthermore, ref.  presented a database that stores childrens’ mobile interaction data. The considered

touch interaction data allowed the children to be assigned to three categories, which included ages from 18 months

to 8 years. The described model was based on the support vector machine (SVM) technique and yielded an

accuracy of 90.45%. Furthermore, the authors of  reported a study based on the random forest (RF) technique,

which used the tap gesture data to distinguish between adults and children. The model functions with an accuracy

of 99%. Other papers report on using touchscreen data to determine an individual’s gender. The study reported in

 considered the prediction of soft biometrics data generated by swipe gestures. The measured accuracy was

78%, which was based on a decision voting scheme determined by four distinct classifiers: decision tree (DT),

naive Bayes (NB), support vector machine (SVM), and logistic regression (LR). The authors of  collected

behavioral data using mobile devices’ accelerometers, gyroscopes, and orientation sensors, which were activated
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during the end users’ interactions with their mobile devices. The gesture data, which determine the gender of the

user, were processed using a k-NN classifier with an accuracy of 93.65%.

4.1.3. Sensor Data Related to Mobile Applications, Location, and Network

Research has proven a correlation between geolocation data and the end users’ demographics and usage

patterns. As an example, in , the researchers stressed the significance of data generated by mobile devices in

the context of demographic modeling and data measurement, while circumventing the need for traditional

censuses and sociological research. This approach significantly speeds up the related political decisions.

Furthermore, the authors of  considered radius, eccentricity, and entropy as three parameters that define travel

behavior. More precisely, the authors attempted to explain the correlation between mobile device use and personal

travel behaviour, which further analyzes the correlation between the frequency of the phone calls, and certain

demographic factors, such as age, gender, and the defining features of the environment.

Moreover, ref.  described an unsupervised, data-driven model designed to create user categories that consider

high-resolution mobility data, which are acquired through mobile navigation applications. The contribution reported

in  described a method for the inference of demographic information using social networks photos, which

include geographic tagging data. More precisely, this shows how an individual’s ethnic characteristics can be

obtained from collected geolocation data related to two particular metropolitan zones. The described model

determines three ethnic groups, and the accuracy was reported as 72% using logistic regression (LR).

The scientific contribution reported in  discussed the suitability of geolocation data in inferring information

regarding marital status and actual residence. The described research process considered the determination of

spatial and temporal features using human mobility patterns, together with other features related to the

geographical context. This approach offers information concerning the places visited by the individuals under

analysis, such as private homes, hospitals, or leisure facilities. The obtained accuracy was 80% based on an

eXtreme gradient boosting (XGBoost) algorithm . The scientific presentation in  started with an analysis of

gender-related behavioral patterns determined by mobile applications, which are related to the use of Wi-Fi and

Bluetooth. The authors reported on the possibility to predict the gender of the end users and showed an accuracy

of 91.8%. The algorithm used random forest (RF) and multinomial naive Bayes (NB). The data were collected from

network connection logs, and the events were sorted according to occurrence frequency. An assessment of the

temporal patterns was conducted relative to the 1000 events that occurred with the highest frequency. This type of

contextual behavioral information is particularly useful in various domains, such as advertisement customization

and the personalization of home screens.

4.2. Remarks Concerning the Study of Human Behaviour

The literature proves that the general patterns of users’ daily activities and behavioural traits can be inferred from

the data collected by mobile sensors . This generates obvious problems regarding the privacy of the collected

personal data, which should be properly addressed by academic and industrial research projects.
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4.2.1. Motion Sensors

The authors of  described a system that is able to assess an individual’s spatial mobility status. Thus, it can

evaluate whether the person is stationary, walking, running, riding a bicycle, climbing stairs, going downstairs, or

driving using only the accelerometer information. Their algorithmic approach, which is based on a support vector

machine (SVM) technique, functions with an accuracy of up to 93.2%. Furthermore, the authors of  used mobile

gyroscope and accelerometer data and developed an application used to track the user’s daily routines. Their

model is based on a decision tree (DT) classifier, and the average area under the receiver operating characteristic

(AUROC) curve was over 99.0%.

The authors in  considered users’ mobility while they were eating, as they are detected by the accelerometer

sensor installed on smartwatches. The authors of  performed a classification of human drinking behavior. This

took into account the data acquired by the accelerometer sensors of the mobile phones young adults used during

nightlife activities. The accuracy of 76.1% was based on a density-based spatial clustering of applications

(DBSCAN) algorithm. The respective approach also assessed the amount of ingested alcohol.

The assessment of user mood and physical state (sober, tipsy, or drunk) was conducted using the approach

reported in  using accelerometer data. It also included a channel for users to report their own behaviour.

Naturally, this was an auxiliary feature, which may not be regarded as an objective source of data. The algorithmic

core was based on the random forest (RF) model, with an accuracy of 70%. Furthermore, mobile motion sensors

were also used to collect data related to sleep, such as sleep habits and postures. The contribution that was

reported in  uses accelerometer, gyroscope, and orientation data, which are retrieved using a smartwatch to

detect and assess sleep postures (supine, left lateral, right lateral, prone). The reported algorithmic model

produced an accuracy beyond 95%, which considered Euclidean distances. The described approach also

evaluated the position of the users’ hand considering the following three states: placed on the abdomen, chest, or

head. The described model used a k-NN algorithm, with an accuracy greater than 88%.

4.2.2. Sensor Data Related to Mobile Applications, Location, and Network

The authors of  used GPS data to assess whether the user was standing, walking, or using other means of

transportation. The algorithm used a fuzzy classifier, which calculated the speed and angle of the person relative to

the ground. The measured accuracy was 96% considering the data, which were collected at five-second intervals.

Additionally, it is also important to note that radio receivers and transmitters, by their nature, are also capable of

providing information about users’ behavioural patterns. This is also susceptible to generating sensible personal

data security issues, which should be addressed. Thus, ref.  used the received signal strength indicator (RSSI)

to determine user activity types. These were selected from the following set of states: lying down, falling, walking,

running, sitting down, and standing up. The algorithmic model used a convolutional neural network (CNN), and the

accuracy rate was 97.7%. The authors of  used three neural networks relative to the channel state information

(CSI), which was measured by the Wi-Fi module. This technique can allegedly determine whether an individual is

sitting, standing, or walking with an accuracy rate of 83%.
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4.3. Remarks Regarding Body Features and Health Parameters

4.3.1. Motion Sensors

The body mass index (BMI) is a mathematical ratio that correlates the body mass and height of any person. The

classic modality to compute this index is providing weight and height using the formula to calculate BMI. Human

gait or style of walking is sustained by the synergistic cooperation established between hundreds of muscles and

joints. Consequently, mobile motion sensors are capable of discerning various muscle movements, which are

transformed into specific patterns for the traits of the individuals, such as BMI. Thus, the authors of  proposed a

hybrid model based on a convolutional neural network and long short-term memory (CNN-LSTM) architecture. This

is able to estimate BMI using the data generated by the accelerometer and the gyroscope, and the maximum

determined accuracy is 94.8%. Considering BMI as a reference, several other health attributes may be determined

. It is interesting to note that another physiological variable that can be evaluated using accelerometer data

is the level of stress. Thus, the authors of  reported an accuracy of 71% using the mentioned techniques and

also the naive Bayes algorithm.

4.3.2. Remarks Concerning the Touchscreen

Data generated by mobile sensors may be used to assess, even to diagnose, certain medical conditions. Thus, it is

possible to determine whether a person suffers from Parkinson’s disease through the analysis of the respective

users’ keystroke writing pattern, which is totally independent from the actual content of the text. The authors in 

considered an SVM algorithm, which determines an area under the receiver operating characteristic (AUROC) of

0.88 relative to this particular problem. Furthermore, ref.  assessed several types of features, which are

specified relative to various handwriting patterns. These are used as biometrics to study Parkinson’s disease.

Moreover, in , the authors demonstrated that people with longer thumbs require less time to conduct swipe

gestures.

4.3.3. Sensors Data Related to Mobile Applications, Location, and Network

The authors of  described an application that detects periods of psychological depression using geolocation

patterns, which are retrieved from the mobile devices of individuals with bipolar disorder (BD). The model uses a

linear regression algorithm, together with a quadratic discriminant analysis algorithm. The method produced an

accuracy of 85%. GPS data may also be used to detect various sleep disorders, such as sleep–wake stages and

sleep-disordered breathing disorders (SRBD), such as obstructive sleep apnea (OSA). The model uses SVM

algorithms and demonstrated accuracy of up to 92.3% . StayActive3 is an application that detects stress by

analyzing the behavior of users via smartphone, using the data from the Wi-Fi, step counter, location, and battery

level, among others. It is also worth mentioning the software system, which is referred to as StayActive . The

authors used a combination of simple relaxation scores that relate to the information acquired from the sleeping

patterns of enrolled users. This analysis measures the longest time intervals during which the enrolled end users

did not touch the screen, the patterns of their social interaction, and physical activity to evaluate the level of the

stress.

[116]

[117][118]

[119]

[120]

[121]

[122]

[123]

[124][125]

[126]



Deep-Learning and Privacy Techniques for Data-Driven Soft Sensors | Encyclopedia.pub

https://encyclopedia.pub/entry/42105 13/26

4.4. The Detection of Psychological Mood and Emotions

End users’ daily activities are dependent on their psychological mood. Consequently, valuable related data may be

collected by various sensors.

4.4.1. Motion Sensors

The authors of  researched the influence that mood may have on the recognition accuracy rate of mobile

biometric systems. Thus, by using an RF classifier, the authors discovered users with face recognition accuracy

less than 70% exhibited the fewest psychological mood changes. The accelerometer provides useful data

concerning users’ walk patterns, which can be used to assess psychological mood relative to the following three

states: happy, sad, or neutral. It is worth noting that the authors of  assessed mood using an RF algorithm,

which produced a mean AUROC of 81%.

4.4.2. Touchscreen Data

Many studies demonstrate a correlation between users’ interaction patterns with the screens of their mobile

devices and their psychological mood. Thus, the authors of  researched the development of psychiatric

diseases using an unobtrusive setup deployed in the patients’ personal environment. The process explored the

connection between bipolar affective disorder syndrome and the use of mobile devices. Considering the data

generated by keystroke metadata and the accelerometer sensor, they obtained a detection accuracy of 90.31%

relative to the proper detection of psychiatric conditions. The findings reported in  described a preventive

medical treatment recommendation system, which may be useful to prevent the actual onset of clinical depression.

Thus, the authors presented a mobile application, which was used to acquire the users’ psychological states

through the analysis of data provided by the call logs and the applications’ usage history. The model produced an

accuracy score of 86%.

The analysis of finger strokes patterns during games  can help distinguish between four emotional states:

excited, relaxed, frustrated, and bored. The SVM algorithm produced an accuracy score of 69%. Moreover, the

findings reported in  analyzed the pattern of finger strokes as an indication of the end user’s psychological

state, which can be classified as on e of three possible values: positive, negative, or neutral. The detection

performed with an accuracy of 90.47% relative to a linear regression model.

4.4.3. Sensors Data Related to Mobile Applications, Location, and Network

MoodExplorer is an application that collects data using various mobile sensors, such as GPS, accelerometer, and

Wi-Fi components . The authors inferred the correlation established between psychological states, which were

reported by the end users themselves, and the usage patterns of the respective mobile devices. The reported

approach determines five types of emotions: happiness, sadness, anger, surprise, and fear. The algorithmic model

is called Graph Factor. The performance was evaluated using a metric designated as “match”, which featured an

average value of 62.9%.
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4.5. User Tracking through Location Data

Although mobile devices often feature dedicated GPS location devices, it is possible to determine geographic

location using the data generated by other mobile sensors.

4.5.1. Motion Sensors

Certain scientific articles demonstrate that the geographic location of a person can be determined using data

generated by several mobile sensors, such as accelerometer, gyroscope, and magnetometer, during the person’s

daily routines that involve using public transport, walking, or driving. The authors of  comparatively analyzed

pre-defined routes, which were used by the end users relative to different means of transportation, such as

walking, train, bus, or taxi. They compared the routes using a dynamic time warping (DTW) algorithm, which

generated a Kullback–Leibler distance of 0.00057 relative to a taxi trip.

The authors in  described a modality that uses accelerometer data to track the end users’ underground routes.

The generated accuracy was 92% considering six visited underground stations, which were based on boosted

naive Bayes (NB), and decision tree (DT) algorithms. The authors of  proposed an algorithmic model that

determines the geographic location of vehicle drivers using the data generated by mobile motion sensors. The

described approach considers an approximation of the related trajectory using accelerometer data. The map

coordinates are correlated with the approximated trajectory to generate precise geographic location data. The

approach that is presented allows for the end user to be located with a maximum error of 200 m. The distance is

calculated as the radius between the center of the circle, which represents the actual person’s location, and the

approximated geographical location.

4.5.2. Sensor Data Related to Mobile Applications, Location, and Network

The end users’ geographic location may also be determined using the data that identify encountered Wi-Fi

networks. Thus, the authors of  described the indoor determination of the end users’ location in a real-time

fashion. The geographical location determination was conducted with an accuracy of 85.7% through the utilization

of a random forest (RF) algorithm.

4.6. Logging Keystroke Data and Text Inference Using Motion Sensors

Touchlogger  is an application that aims to detect the precise zone of the screen that is touched. The process

considers the device’s micromovements as they are detected by the mobile gyroscope and accelerometer. The

proposed approach considers a division of the screen into ten zones, which are analyzed using a probability

density function relative to a Gaussian distribution. The application has shown an accuracy of 70%. It is also

possible to determine the text that the end user generates based on the screen zones that are touched.

Furthermore, ref.  a related system has an accuracy rate of 93%, by utilizing a hierarchical classification

scheme. Additionally, ref.  describes a controlled environment, which is used to detect various text patterns that
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are entered using the mobile devices’ touchscreen. Thus, the PIN code was correctly identified in 43% of the

cases, while the unlock pattern was correctly detected in 73% of the cases. The algorithmic core is based on a

hybrid model, which considers logistic regression (LR), and hidden markov models (HMM).
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