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Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory,

and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy

lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as

fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. 
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1. PEA, an Anti-Inflammatory and Neuroprotective Substance

Lipid molecules may play a primary role essential to fight, or at least delay, chronic neuroinflammation, a phenomenon

underlying many neurodegenerative diseases. A class of anti-inflammatory molecules are the Autacoid Local Injury

Antagonist (ALIA) amides . This acronym, coined by the research group of Rita Levi Montalcini, describes a group of

endogenous bioactive acyl ethanolamides with anti-inflammatory properties , generally referred to as N-

acylethanolamines (NAEs). NAEs include PEA, an anti-inflammatory and analgesic substance, oleoylethanolamide

(OEA), an anorectic substance, and anandamide (AEA), an endocannabinoid (eCB) substance with autocrine and

paracrine signaling properties . PEA cannot strictly be considered a classic eCB, because it has a low affinity for the

cannabinoid receptors CB1 and CB2 . However, the presence of PEA enhances the AEA activity, likely through an

“entourage effect”. PEA is endowed with important anti-inflammatory, neuroprotective, and analgesic actions, and some of

its effects are mediated by the peroxisome proliferator-activated receptor (PPAR)-α. PEA anti-inflammatory and

neuroprotective functions have been attributed in particular to eCBs belonging to the acyl ethanolamide family, as well as

to their congeners, since their production is significantly increased in the sites of neuronal damage . PEA is naturally

found in some foods, such as egg yolk, peanut flour, soybean oil, and corn . In animal cells, PEA is synthesized from

palmitic acid, the most common fatty acid present in many foods including palm oil, meats, cheeses, butter, and other

dairy products . Because of its high safety and tolerability , PEA is often used as an analgesic, anti-

inflammatory, and neuroprotective mediator in the treatment of acute and chronic inflammatory diseases, alone or

combined with antioxidant or analgesic molecules acting on molecular targets of central and peripheral nervous system

and immune cells . In the brain, PEA is produced “on demand” by neurons, microglia, and astrocytes, and thus

plays a pleiotropic and pro-homeostatic role, when faced with external stressors provoking inflammation. PEA exerts a

local anti-injury function by down-modulating mast cell activation and protecting neurons from excitotoxicity . The

synthesis of PEA takes place in the membranes of various cell populations and mainly involves the class of N-

acylphosphatidylethanolamines (NAPEs). Similar to its eCB congeners, PEA acts as local neuroprotective mediator and

its physiological tone depends on the finely regulated balance between biosynthesis (mainly catalyzed by NAPE-selective

phospholipase D) and degradation (mainly catalyzed by fatty acid amide hydrolase (FAAH) and N-acylethanolamine-

hydrolyzing acid amidase) .

It was proposed that PEA exerts its effects through three mechanisms, which are not mutually exclusive. The first

mechanism advances that PEA acts by down-regulating mast-cell degranulation, via an ALIA effect ; the second

one, the entourage effect, postulates that PEA acts by enhancing the anti-inflammatory and anti-nociceptive effects

exerted by AEA ; and finally, the third one, the “receptor mechanism”, is based on PEA’s capability to directly

stimulate either PPAR-α or the orphan receptor G-protein coupling, GPR55, which mediates many anti-inflammatory

effects .

PEA lacks a direct antioxidant capacity to prevent the formation of free radicals and counteract the damage of DNA, lipids,

and proteins . With its lipid structure and the large size of heterogeneous particles in the naïve state, PEA has limitations

in terms of solubility and bioavailability. To overcome these problems, PEA has been micronized (m-PEA) or ultra-
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micronized (um-PEA) . Several in vitro and in vivo preclinical studies attest that PEA, especially in its micrometer-sized

crystalline forms, may be a therapeutic agent for the effective treatment of neuroinflammatory pathologies . m-PEA and

um-PEA show enhanced rate of dissolution and absorption , better bioavailability, pharmacokinetics, and efficacy when

compared to its naïve form . Since, as already mentioned, PEA has no antioxidant effects per se, the combination of

PEA’s ultra-micronized forms with an antioxidant agent, such as a flavonoid, results in more efficacious forms than either

molecule alone, potentiating the pharmacological effects of both compounds . In fact, among the natural molecules with

excellent antioxidant and antimicrobial functions there are flavonoids, as firstly luteolin, and also polydatin, quercetin, and

silymarin. These compounds possess marked antioxidant and neuroprotective pharmacological actions, by modulating

apoptosis and release of cytokines and free radicals (reactive oxygen and nitrogen species), suppressing the production

of tumor necrosis factor alpha, inhibiting autophagy, and controlling signal transduction pathways . In particular,

luteolin is able to improve the PEA morphology: while naïve PEA has a morphology featured by large flat crystals, very

small quantities of luteolin stabilize the microparticles by inhibiting the PEA crystallization process . The combination of

PEA and luteolin makes co-um-PEALut a product able to tackle several neuroinflammatory conditions, and to have

protective effects .

2. PEA Action in the Presence of Aging and Neurodegeneration

Aging is the result of a continuous interaction between biological mechanisms and environmental factors, such as life

events, health conditions, and lifestyle habits. Although aging is not necessarily synonymous with disease, the

deterioration in cell function that increases with advancing age progressively increments the risk of developing disease

and disability, because bodily and brain cellular responses become less and less efficient . Namely, aging is

characterized by gradual and permanent accumulation of cellular and molecular damage (such as abnormal protein

dynamics, mitochondrial dysfunction, DNA damage, oxidative stress, neurotrophin dysfunction), progressive structural

changes of neurons (deregulation of neurotransmitters and neuro-signals), loss of tissue and organ function, and

neuroinflammatory processes . Unlike the normally beneficial acute inflammatory response, chronic

neuroinflammation can lead to damage and destruction of tissues, and often results from inappropriate immune responses

. A fundamental principle behind neuroinflammation is the existence of numerous signaling pathways between glial

cells and immune system. Notably, despite different triggering events, a common feature of several central and peripheral

neuropathologies is chronic immune activation, particularly of the microglia, the resident macrophages of the central

nervous system . Individual neurodegenerative disorders are heterogeneous in etiopathogenesis and symptomatology,

but biomedical research has revealed many similarities among them at the subcellular level. These similarities suggest

that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well .

The most common neurodegenerative diseases encompass a wide range of conditions which impair mobility, muscle

coordination and strength, mood, and cognition. They are amyloidosis, tauopathies, α-synucleinopathies, proteopathies

(TAR DNA-binding protein 43, TDP-43), and include Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s

Disease (HD), Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS) (Figure
1) .

Figure 1. Neurodegenerative diseases share common pathological hallmarks leading to cell dysfunction and death.

Up to now, the treatment of most of these neurodegenerative diseases was mainly symptomatic (dopaminergic treatment

for PD, inhibitors of acetylcholinesterase for cognitive disorders, antipsychotics for dementia), despite significant attempts
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to find drugs reducing or rescuing the debilitating symptoms . In this context, integrative treatments of these

neurodegenerative diseases have been investigated through a number of in vitro and in vivo animal models of disease,

and, when combined with classical drug therapies, are in the frontline of research in an attempt to protect against

neuroinflammation and oxidative stress, and thereby improve symptomatology of the neurodegenerative patients .

Since most clinical studies on PEA are related to neuropathic pain or inflammation-related peripheral conditions, and there

are fewer studies evaluating the possible beneficial effects of PEA on neurodegenerative diseases, researchers were

interested to offer a general overview of the effects of PEA on different symptoms of neurodegeneration, taking into

account both human (Table 1) and rodent (Table 2) studies.

Table 1. Summary of human studies using PEA in the presence of neurodegeneration.

Study Disease Sample
um PEA
(Alone or
In Combination)

Dosage Duration Main Outcomes of PEA Treatment

MCI 1 patient co-um-PEALut
700/70

mg
daily

T3: 3
months

treatment
T9: 9

months
follow-up

T3: mild (though not significant)
cognitive improvement;

T9: near-normal neuropsychological
assessment; improvement in test
scores; brain SPECT near-normal.

PD 30
patients

PEA added to
regular levodopa

600 mg
daily 12 months

Progressive reduction in the total
MDS-UPDRS score;

reduction in most nonmotor and
motor symptoms.

PD 1 patient
co-um-PEALut added

to regular
carbidopa/levodopa

700/70
mg

daily
4 months

Complete resolution of leg and trunk
dyskinesia and marked reduction in
the onset of camptocormia during

the “off” state.

FTD 17
patients co-um-PEALut

700
mg/2
daily

4 weeks

Improvement in test scores and
neurophysiological evaluation;

increase in TMS-evoked frontal lobe
activity and of high-frequency
oscillations in the beta/gamma

range.

ALS 1 patient PEA
600

mg/2
daily

∼40 days Improvement in clinical picture.

ALS

28 treated
and 36

untreated
patients

PEA + 50 mg riluzole
or 50 mg riluzole only

600
mg/2
daily

6 months
Lower decrease in forced vital

capacity over time as compared with
untreated ALS patients.

MS

24
patients

17 healthy
controls

eCBs levels in blood _ _ eCB system is altered in MS.

MS 1 patient PEA
600

mg/2
daily

∼9 months
Pain reduction; increased

interval between acupuncture
sessions.

MS 29
patients

PEA added to
IFN-β1a or placebo

600 mg
daily 12 months

Improvement in pain sensation, no
reduction of erythema at the

injection site, improved evaluation
of quality of life, increase in PEA,

AEA and OEA plasma levels,
reduction of interferon-γ, tumor

necrosis factor-α, and interleukin-17
serum profile.

Myasthenia
gravis

22
patients PEA

600
mg/2
daily

1 week
Reduced level of disability and

decremental muscle
response.

AEA-Anandamide; ALS-Amyotrophic Lateral Sclerosis; co-um-PEALut-combined ultra-micronized PEA/Lutein; eCB-

endocannabinoid; FTD-Frontotemporal Dementia; IFN-β1-Interferon-beta-1; MCI-Mild Cognitive Impairment; MDS-

UPDRS-Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; MS-Multiple Sclerosis; OEA-

Oleoylethanolamide; PD-Parkinson Disease; um-ultra-micronized.
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Table 2. Summary of experimental studies using PEA in the presence of neurodegeneration.

Study Disease Sample
um PEA
(Alone or In
Combination)

Dosage Duration Main Outcomes of PEA
Treatment

AD model
(Aβ 1–42

intra-
hippocampal

injection)

Male adult
Sprague-

Dawley rats (9–
12/group)

i.p.
PEA

PEA added to
GW6471

PEA:10 mg/kg;
GW647: 2 mg/kg 7 days

Restoration of Aβ 1–42-
induced alterations;

reduced mnestic deficits.

AD model
(Aβ 25–35

i.c.v.
injection)

Male PPAR-
α/(B6.129S4-

SvJaePparatm
1Gonz) and WT

mice (9–
10/group)

s.c.
PEA and
GW7647

PEA: 3–30 mg/kg
daily, GW7647: 5

mg/kg daily

1–2
weeks

or a
single
dose

Reduction (10 mg/kg) or
prevention (30 mg/kg) of

behavioral impairments. No
rescue of memory deficits.
PEA acute treatment was

ineffective.

AD model

3-month-old
male 3 × Tg-AD
and WT mice
(9–10/group)

s.c.
PEA

or vehicle
10 mg/kg daily 90 days

Counteraction of disease
progression, improvement

of trophic support to
neurons, in the absence of

astrocytes and neuronal
toxicity.

AD model

3-month-old or
9-month-old

male 3 × Tg-AD
or WT mice

(7–11/group)

s.c.
PEA

or vehicle
10 mg/kg daily 90 days

Improvement of learning and
memory, amelioration of

depressive and anhedonia-
like symptoms, reduced Aβ

formation, tau protein
phosphorylation, promotion

of hippocampal neuronal
survival and astrocytic

function,
rebalancing of glutamatergic

transmission, restraint of
neuroinflammation.

AD model

2-month-old
male 3 × Tg-AD

or WT mice
(7–11/group)

oral
PEA

or vehicle

single dose/sub-
chronic/chronic:100

mg/kg daily

1–8–90
days

Rescue of cognitive deficit,
restraint of

neuroinflammation and
oxidative stress, reduced
increase in hippocampal

glutamate levels.

PD model
(MPTP)

6–7-week-old
male PPAR-

αKO
PPAR-αWT

mice (10/group)

i.p.
PEA 10 mg/kg 8 days

Reduction of MPTP-induced
microglial activation, glial

fibrillary acidic protein
positive expression
astrocyte numbers,

overexpression of S100b;
protection against

alterations in microtubule-
associated protein 2a,b,
dopamine transporter,

nNOS-positive cells in the
substantia nigra. Reversal of

motor deficits.

PD model
(MPTP)

3/21-month-old
male CD1 mice

(10/group)

oral
PEA 10 mg/kg 60 days

Amelioration of behavioral
deficits and of reduction of
tyrosine hydroxylase and
dopamine transporter in

substantia nigra. Reduction
of hippocampal

proinflammatory cytokines
and pro-neurogenic effects.

PD model
(6-OHDA)

Ten-week-old
male Swiss

CD1 mice (6 ×
group)

s.c.
PEA

or GW7647

PEA
3–30 mg/kg/day;

GW7647 5
mg/kg/day

28 days

Improvement of behavioral
impairment. Increased
tyrosine hydroxylase

expression at striatal level.
Reduction in the expression

of pro-inflammatory
enzymes, protective
scavenging effect.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]



Study Disease Sample
um PEA
(Alone or In
Combination)

Dosage Duration Main Outcomes of PEA
Treatment

PD model
(MPTP)

8-week-old
male C57BL/6

(10/group)

i.p.
co-um-
PEALut

1 mg/kg daily 8 days

Reduction of motor
impairment, cataleptic

response, immobility and
anxiety levels. Reduction of
neuronal degeneration and

of specific PD markers,
attenuation of

inflammatory processes
(activation of astrocytes,

pro-inflammatory cytokines,
and nitric oxide synthase),
stimulation of autophagy.

PD model
(MPTP)

8-week-old
male C57BL/6

(10/group)

oral
PEA-OXA
or vehicle

10 mg/kg daily 8 days

Prevention of MPTP-induced
bradykinesia and anxiety,

and neuronal degeneration
of the dopaminergic tract,
prevention of dopamine
depletion, modulation of
microglia and astrocyte

activation.

HD model

∼32-day-old-
R6/2 10-week-

old R6/2
mice and WT

mice (4/group)

Measurement
of PEA, AEA

and 2-AG
endogenous

levels

_ _
Alteration of the eCB

system, decreased levels of
PEA in the striatum

MS model
(EAE)

12-week-old
female C57BL/6

(8/group)

i.p.
PEA

or CBD
or in

combination

PEA 5 mg/kg
CBD 5 mg/kg 3 days

Reduced severity of EAE
neurobehavioral scores,
diminished inflammation,

demyelination, axonal
damage and inflammatory

cytokine expression.

MS model
(chronic
relapsing

EAE)

Biozzi ADH
mice

(>6/group)

i.v. or i.p.
PEA 1–10 mg/kg Single

injection Amelioration of spasticity

MS model
(EAE)

C57BL/6 mice
(8/group)

i.p.
co-um-

PEALut or
vehicle

0.1, 1, and 5 mg/kg 16 days

Dose-dependent
improvement of clinical

signs through
anti-inflammatory signals
and pro-resolving circuits.

MS model
(TMEV-IDD)

Four-week
female SJL/J

mice

i.p.
PEA

or vehicle
5 mg/kg 10 days

Reduction of motor
disability, anti-inflammatory

effect.

Vascular
dementia CD1 mice

Oral
PEA-OXA
or vehicle

10 mg/kg daily 15 days

Improvement of behavioral
deficits, reduction of

histological alterations,
decrease of markers of
astrocyte and microglia
activation and oxidative

stress, modulation of
antioxidant response,
inhibition of apoptotic

process.

2-AG-2-Arachidonoylglycerol; 6-OHDA-6-hydroxydopamine; Aβ-amyloid beta; CBD-cannabidiol; EAE-Experimental

Autoimmune Encephalomyelitis; i.c.v.-intracerebroventricular; i.p.-intraperitoneal; KO-knockout; MPTP-1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine; nNOS-neuronal Nitric Oxide Synthase; PEA-OXA-2-pentadecyl-2-oxazoline; PPAR-α-

peroxisome proliferator-activated receptor-α; s.c.-subcutaneous; TMEV-IDD-Theiler’s Murine Encephalomyelitis Virus-

Induced Demyelinating Disease; WT-Wild Type.
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