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The capacity of insects to transmit pathogens is known as vector competence (VC). Evidence indicates that
insecticide exposure and resistance increase the risk of pathogen transmission. Under this context, adverse effects
such as epidemics in human populations or economic repercussions on crops will increase while current vector
control efforts become entirely ineffective. However, studies also point to opposite effects where IR or exposure to
insecticides reduces VC. To determine the impact of insecticide resistance (IR) on VC precisely, it is essential to
establish reproducible experimental designs to reduce the presence of confusing variables that make the
interpretation of results difficult. Therefore, although there is evidence related to the influence of IR on VC, more

research is necessary.

insecticide resistance insecticide exposure vector competence pathogen transmission

| 1. Introduction

Insects have a close relationship with humans. They participate in activities that benefit human well-being (i.e.,
pollination) and exert adverse effects such as those observed in public health, crops, hygiene, and other sectors [,
On the side of unfavorable impacts, the researchers can highlight the insects’ role as vectors of diseases. For
example, mosquitoes (i.e., Culicidae), triatomine bugs (Reduviidae), blackflies (Simuliidae), and lice (Pediculidae)
affect human health by transmitting arboviruses, parasites, or bacteria [2. Additionally, aphids, whiteflies, and thrips
transmit pathogens to economically important crops Bl Together, vectors of human and crop pathogens cause

considerable economic losses due to human health costs and lower agricultural production 4!,

This capacity of insects to transmit pathogens is known as vector competence (VC). This trait defines the intrinsic
capacity of an organism to acquire, maintain replication, disseminate, and transmit a pathogen. VC is a complex
trait influenced by factors such as the genetic background of hosts and insects, strain and genotype of pathogens,
and other aspects associated with environmental variables such as temperature B8, For example, many studies
have evaluated the VC of Aedes aegypti. It has been determined that the extrinsic incubation period (the time
needed for a mosquito to become infectious) is shorter at higher temperatures . Additionally, bacterial symbionts
affect VC by shaping immune responses 8. Furthermore, Souza-Neto et al. [, in a systematic review of VC
literature in different populations of Ae. aegypti did not find any record of a fully refractory natural population to
virus infection; however, there are populations completely susceptible to Zika, dengue, and chikungunya viruses,

demonstrating differential regulation of VC.
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Studies of VC are heterogeneous (e.g., pathogen challenges performed through intrathoracic injections vs.
membrane feeding), and experimental limitations are present (e.g., lack of model animals that mimic human

pathogenesis). There are several reports giving a detailed description of past and current knowledge of VC in
mosquitoes [HILOI11][12][13][14]

The primary strategy to avoid adverse impacts of insects on public health or agriculture is the use of pesticides.
Pesticides are molecules used to destroy, prevent, or repel insects that are a nuisance to humans 22, Nowadays,
various chemicals are applied to control insect populations; according to their structure and synthesis, the diversity
of insecticides includes chlorinated hydrocarbon compounds, organophosphates, carbamates, pyrethroids,
neonicotinoids, formamidines, and other molecules, plus botanical and microbial agents 18, The continued use of
insecticides has had unintended consequences, particularly the emergence of resistant populations in both human
and crop insect vectors. Given many reports on the ineffectiveness of chemical agents in controlling insect
populations, the researchers can conceptualize insecticide resistance (IR). This phenomenon is defined as the
decrease in the susceptibility of an insect population to a previously effective insecticide caused by its continued
use and/or possible cross-selection with other chemical substances, which arises through genetic, physiological, or

behavioral changes and is also a hereditary trait [2ZI[18]119]

IR has been described in vectors regarding a broad spectrum of chemical compounds, including
organophosphates 291211221 among others. Four mechanisms have been determined to reduce the efficacy of
pesticides: changes in insect behavior, thickening of the insect cuticle, increased activity of detoxifying enzymes,
and modification of the target site [22124125] The more studied IR mechanisms are target site modification and
detoxifying enzyme alteration. For example, there is a vast amount of literature concerning mutations in the
voltage-gated sodium channel (VGSC), known together as knockdown resistant mutations (kdr mutations,
hereafter), as well as mutations in the acetylcholinesterase gene (referred to as Ace mutations hereafter). These
mutations are related to pyrethroid and DDT resistance and organophosphate and carbamate resistance,
respectively (281271 On the other hand, different enzymes participate in detoxification events leading to metabolic
resistance. For instance, mixed-function oxidases are greatly involved in pyrethroid resistance 2829 glong with
glutathione S transferases and esterases BRIl |t has been shown that IR affects current efforts in vector control
to prevent the emergence of epidemics of emerging or re-emerging diseases such as chikungunya B2I33 The

same has been observed in pest vectors of important crops such as soybeans and tomatoes [341(331(36],

On the other hand, little is known about the impact of IR on VC. Given the actual scenario in which IR affects vector
control, the researchers aimed to systematically synthesize and analyze the research on the effect of IR on VC in
vector species that impact human health or crops. It is important to note that the researchers only reviewed

research that describes experimental procedures that directly link IR and VC.

| 2. Effects of Insecticide Exposure on Pathogen Transmission

One key aspect that must be considered while exploring current control efforts’ effectiveness is determining if

insecticide exposure could impair or enhance VC. It is possible that exposure to sub-lethal doses of insecticides
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could decrease insects’ capacity to acquire a pathogen, limiting infection capacity. As this factor remains to be
elucidated completely, a contrary enhancing pattern may be present, as reported by Muturi and Alto 7, Moltini-
Conclois et al. 38, and Knecht et al. B2, In this section, the researchers show evidence supporting either of the two

scenarios.

Regarding enhancement of VC after exposure to insecticides, Muturi and Alto 9 found increased viral infection
and dissemination of the Sindbis virus in Ae. aegypti when larvae were exposed to malathion. However, heat
treatment at 30 °C was also applied to immature stages; results must be interpreted with caution as temperature
may influence VC 1. The same effect was found in Ae. aegypti exposed to Bti. Here, the larval exposure

augmented dengue infection and dissemination in two Bti-resistant strains of Ae. aegypti 281,

Insecticide susceptibility could interact with physiological characteristics such as insect age. For example, older Ae.
albopictus mosquitoes exposed to sublethal doses of bifenthrin develop higher dissemination viral titers of Zika
virus than unexposed old (11-12 days old) and younger mosquitoes (6—7 days old). Remarkably, older mosquitoes
exposed to bifenthrin exhibited greater viral dissemination to other tissues outside the midgut, even when

compared with younger exposed mosquitoes 22,

On the other hand, studies that show an impairment of VC after insecticide exposure are scarcer. Oral
consumption of bifenthrin has been shown to reduce dengue infection rates and body titers (dissemination) at 14
dpi in Ae. albopictus, but no effect was observed at 7 dpi “2. The same trend was consistently found in An.
gambiae s. s. collected in Uganda. Homozygous mosquitoes for the kdr mutation L1014S had a reduction in
prevalence and infection intensity by P. falciparum after exposure to deltamethrin in contrast to the unexposed
control group 3., Finally, Hauser et al. 44! determined that exposing insects at the larval or adult stage or both

stages to permethrin diminished VC of An. gambiae s. s. for P. berghei.

As reported in the previous section, a neutral trend is found in the relationship between insecticide exposure and
VC. Alomar et al. 43 reported that exposure to pyriproxyfen had no impact on the infection, dissemination, or

transmission rates of the Zika virus in Ae. aegypti.

In this section, the researchers have aimed to review all information regarding the exposure of insects to
pesticides; nonetheless, few heterogeneous studies are published. At the time of conducting this research, only
seven studies strictly adhered to the direct exposure of immature stages or adult insects to any pesticide and the
further evaluation of any component of VC. Besides the small number of studies, there is variation in experimental
settings that limits the researchers' ability to establish clear conclusions about the influence of insecticide exposure
on VC. For example, only one study was performed in the Anopheles-Plasmodium association “3l; the remaining
were conducted in Ae. aegypti or Ae. albopictus [B7I38I3942]145] To expand this variation, insecticides used for
bioassays were from different toxicological groups possessing different modes of action (malathion, an
organophosphate B7: Bti, a biological insecticide [28: pyriproxyfen, a juvenile hormone analog 2! bifenthrin E242;

permethrin “4l: and deltamethrin [“3)). Three studies focused on insecticide exposure in larvae [4AB7I45] while the
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other four were performed in adults [B8l41[42144]: fing|ly, there is also variation in the pathogen used for infections;

two studies involved the dengue virus B4l (Table 1).

Table 1. Studies aimed at the relationship between insecticide resistance (IR) or exposure to insecticides and

vector competence (VC).

Insecticide Metabolic Target Site Phenotypic  Type of Additional

i Path n " i . c . L ion Referen
S athoge Exposure ResistanceModifications Resistance Association ocatio Treatments C c cnCe
Anopheles Plasmodium DDT GST DDT Positive Lab l46)
gambiae berghei

Plasmodium . . ; [47]
. L1014S Deltamethrin Positive Field
falciparum
Plasmodium DDT L1014F DDT Posiive  Field la8)
falciparum
. OP, CAR,
I?I;:ngi:i]m I'Glfllgg and PYR- Negative * Lab (49
P DDT
. OP, CAR,
Plasmodlum U and PYR- Positive 2 Lab 491
: falciparum G119S
An.gambiae s.s. DDT
Metarhizium 3
erarzum L1014F PYR Positive  Lab 1501
anisopliae
Beauveria i
bassiana ® L1014F PYR Positive Lab sl
assiana
Plasmodlum Deltamethrin L1014S Negative Field 43
falciparum
Plasmodium Permethrin Negative Lab Larval 44
berghei competition
o- N1575Y,
Plasmodium Cypermethrin, 11527T, . 5]
falciparum Deltamethrin, L1014F, U A G Az
Permethrin G119S
An.s gambiae s.
. Plasmodium L1014F, . 52]
sp. G119S Neutral Field
Plasmodium L1014F, . 53]
falciparum L1014S Positive Lab
An. funestus Plasmodium L119F- L [54]
falciparum GSTe2 Negative =

https://encyclopedia.pub/entry/22141 4/12



Impact of Insecticide Resistance on Vector Competence | Encyclopedia.pub

Species Pathogen Insecticide Met_abollc Tar_g_et S_|te Phepotyplc Typ(_e o_f Location Additional Reference
Exposure ResistanceModifications Resistance Association Treatments
Plasmodium L119F- -
Positive 2 (541
falciparum GSTe?2 Lab
Plasmodium L119F- ) 55]
sp. GSTe2 Neutral Field
Plasmodium L119F- " ) 55
. GSTe2 Positive Field
Plasmodium A296S ) ) [55]
sp. (GABA) Negative Field
Japanese )
Culex gelidus Encephalitis Deltamet_hrln, Neutral Field 58l
; Malathion
Virus
Plasmodium Ester, AceR Neutral Field 57
relictum
Cx. pipiens
Plasmodlum Ester, AceR Neutral Lab 57
relictum
Wuchereria Esterase ) ) 58]
bancrofti activity Negative Fleld
Wuchererlla Estgre_lse Negative Lab 58]
bancrofti activity
Cx.
quinquefasciatus
WNV G1188, oP Positive Lab k9
Ester
RVV G119s, oP Neutral Lab kg
Ester
Aedes aegypti DENV-2 DDT Neutral Lab Heat shock (601
DENV-1 Bi Neutral Lab Larval (61]
densities
) V1016l, o 62]
Zika F1534C PYR Positive Lab
Sindbis Malathion Positive Lab Heat (7]
treatment
DENV Bti Bi Positive Lab (28]
ZIKV Pyriproxyfen Neutral Lab (451

ation in VC is observed in Myzus persicae, the peach potato aphid. Here, pyrethroid-susceptible
individuals (Type J) displayed less acquisition of potato virus Y in A-cyhalothrin sprayed leaves than the control
(non-sprayed) leaves even three days after spraying. When repeating this experiment using a resistant strain (Type
O) characterized by an Ace and a kdr mutation in M918L, the spraying of leaves did not produce a reduction in
acquisition of potato virus Y by M. persicae type O. It can be hypothesized that the presence of IR mechanisms
affects viral acquisition 8. In contrast to these findings, no association was determined between IR and VC. Zhao
et al. 87 found that, after 48 h, there was no difference in transmission rates between susceptible and spinosad-
resistant F. occidentalis individuals. This difference could arise given that IR alters only acquisition events and not

the molecular machinery related to the transmission of pathogens (€8],

All the studies mentioned earlier were conducted in laboratory settings, and less is known regarding how field
variants (e.g., different biotypes) could affect this relationship. Studies conducted in whiteflies (Bemisia tabaci)

have reported variations in IR as well as genes related to the transmission of tomato yellow leaf curl virus (TYLCV)
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. Insecticide Metabolic Target Site Phenotypic  Type of . Additional
Sl Pathogen Exposure ResistanceModifications Resistance Association"ocatlon Treatments Referenceortant to
CYP and V1016, » ey € P450,
DENV-1 GsT F1534C PYR Positive Lab .
ethroids,
_ v1016l, . . l64]
respecnvely [71] DENV F1534C Negative Field TYLCV,
DENV-2 Deltamethrin Negative Lab 63l f tomato
Ae. albopictus Zika Bifenthrin Positive Lab sy ase, and
71
L24] DENV Bifenthrin Negative Lab wr  htof IR.
Tomato spotted . n in the
wilt _ Spinosad Positive Lab ‘tuations,
Frankliniella orthotospovirus
occidentalis [66][68][67] istigated
Tomato spotted
wilt Spinosad Neutral Lab 671 \ation of
orthotospovirus |
Diethyl
Myzus persicae Potato Virus Y A-Cyhalothrin Ace, M918L carbamates Positive Lab (s8]
PYR
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