Veterinary Antiparasitic to Human Anticancer

Subjects: Oncology Contributor: Jeongik Lee, Tania Sultana, Umair Jan

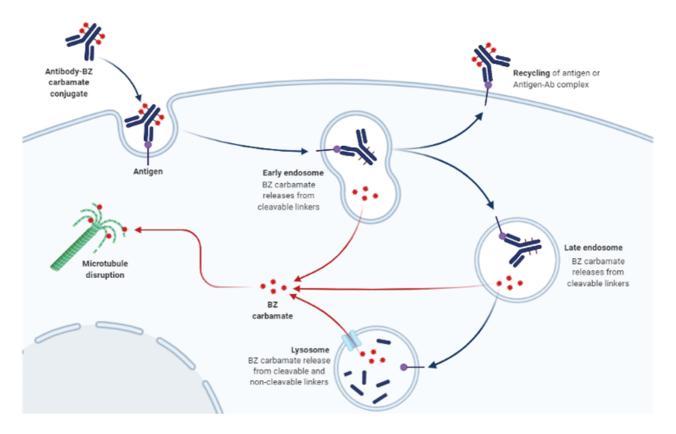
Cancer is an extensive disease and the most common cause of morbidity and mortality worldwide. It is characterized by a deregulation of the cell cycle, which primarily results in a progressive loss of control of cellular growth and differentiation. The repurposing of veterinary antiparasitic drugs for the treatment of cancer is gaining traction, as supported by existing literature. A prominent example is the proposal to implement the use of veterinary antiparasitics such as benzimidazole carbamates and halogenated salicylanilides as novel anticancer drugs. These agents have revealed pronounced antitumor activities and gained special attention for "double repositioning", as they are repurposed for different species and diseases simultaneously, acting via different mechanisms depending on their target. As anticancer agents, these compounds employ several mechanisms, including the inhibition of oncogenic signal transduction pathways of mitochondrial respiration and the inhibition of cellular stress responses.

Keywords: drug repurposing ; antiparasitic ; benzimidazole carbamates ; halogenated salicylanilides ; cancer therapy

1. Introduction

Cancer is an extensive disease and the most common cause of morbidity and mortality worldwide. It is characterized by a deregulation of the cell cycle, which primarily results in a progressive loss of control of cellular growth and differentiation ^[1]. Although there are numerous ongoing studies on anticancer therapy, with many lead candidates at various phases of preclinical or clinical research, only 5% of potential anticancer therapies entering phase I clinical trials have been approved and have entered the market ^[2]. The standard cancer treatments include surgery, immunotherapy, radiation, and chemotherapy. Currently, chemotherapy is one of the most efficient and potent strategies used to treat malignant tumors. However, the development of multidrug resistance to chemotherapeutics has become a huge impediment to successful cancer treatment. Clearly, new therapeutic alternatives are required to improve cancer diagnosis and treatment. Prior to being marketed as a new drug, the lead compounds face many hurdles during preclinical and clinical studies to ensure their quality, safety, dosage, and efficacy. Clinical trials are costly and time-consuming, requiring ten to fifteen years of dedicated research. The entire development process of getting a single candidate compound onto the market is hindered by the exorbitant costs (approximately \$1-\$2.5 billion) associated with the necessary trials required for U.S. Food and Drug Administration (FDA) approval ^[3].

Drug repurposing has gained recognition in the last decade, enabling existing pharmaceutical products to be reconsidered for alternative applications. It has reduced the risk of a drug failing to reach the market, owing to the low burden of adverse effects, the attenuation of the economic load, and the expedition of the approval process ^[4]. It can also offer an improved risk versus reward trade-off as it shortens the timeline of the drug development process and is also economically feasible when compared to other drug development strategies ^[5]. Additionally, the preclinical results obtained from the use of repurposed drugs may expedite the process of the preclinical to clinical translation of cancer treatment ^[6].


2. BZ Carbamates

BZ antiparasitics are a group of heterocyclic aromatic organic compounds that are extensively used in both human and veterinary medicines to inhibit internal parasites. Some important BZ drugs include MZ, albendazole (ABZ), fenbendazole (FZ), flubendazole (FLU), triclabendazole, parbendazole, oxibendazole, and ricobendazole. In the last few years, some of these have been successfully investigated for various types of cancers worldwide.

2.1. Mechanism of Action of BZ Carbamates

The molecular mode of action of BZ carbamates involves inhibiting the polymerization of tubulin and facilitating the disruption of microtubules in parasite cells (**Figure 1**) ^[Z]. An in vitro study using the extracts of helminthic and mammalian tubulin has implicated tubulin as the leading molecular target of BZ carbamates ^[8]. Tubulin is pivotal to cell motility,

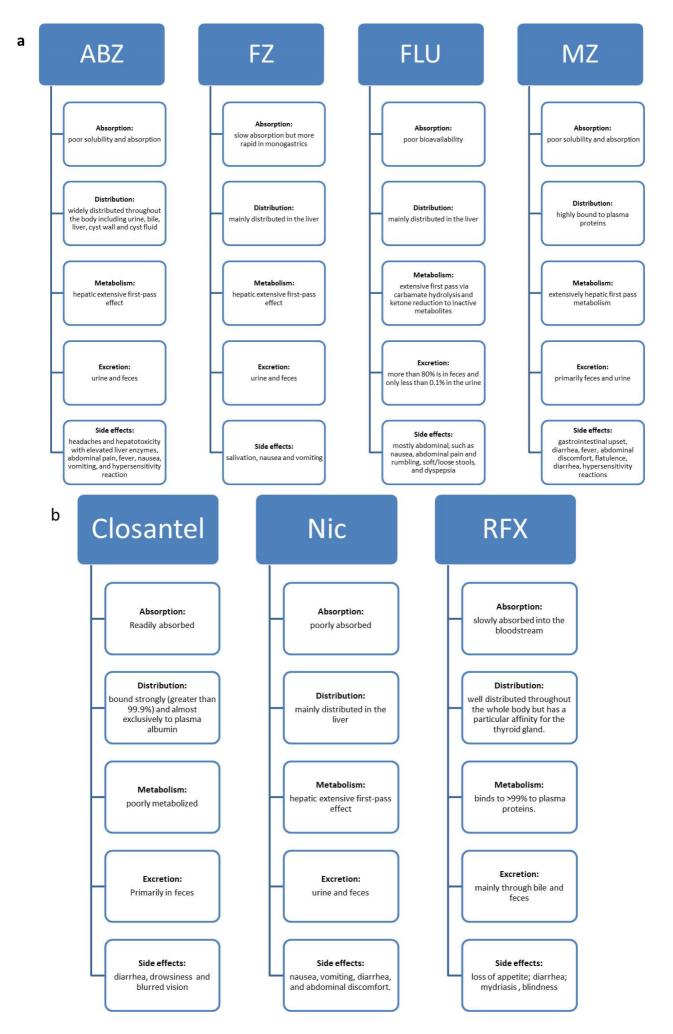

proliferation, and division; the intercellular transport of organelles; the maintenance of cell shape; and the secretion process of cells in all living organisms ^[9]. By blocking microtubule elongation in worms, BZ carbamates perturb glucose uptake in cells. Eventually, the glycogen reserves are exhausted, and their energy management mechanisms are depleted, culminating in the death of the parasites ^[10].

Figure 1. Mechanism of action of benzimidazole (BZ) carbamates targeting tubulin. Tubulin is the leading molecular target of BZ carbamates. They selectively bind to parasitic β -tubulin, promoting their immobilization and death. dapted from "Antibody-Drug Conjugate Drug Release", by BioRender.com (2022). Retrieved from <u>https://app.biorender.com/biorender-templates</u>, accessed on 10 March 2022.

2.2. Anticancer Activity of BZ Carbamates

BZ carbamates are cancer cell-selective, causing minimal cytotoxicity in normal cells but increased cytotoxicity in different tumor cells. Several studies have reported that BZ carbamates inhibit the polymerization of mammalian tubulin in vitro. Whether the same effect would be observed in human cells, and if so, whether such targeted efforts could be effective against tumors, are some questions raised by these reports. Lacey et al. first addressed the activity of BZ carbamates against mouse leukemia cells L1210 in 1985 ^[11]. A more thorough inquiry into the antitumor effects of BZ carbamates was carried out; the most promising outcomes of this inquiry are summarized in **Table 1**. The general pharmacokinetic properties of BZ carbamates are as follows: slow absorption; wide distribution throughout the body; extensive hepatic metabolism; and excretion via urine and feces (**Figure 2**a). Their common side effects are fever, nausea, vomiting, abdominal discomfort, and hepatotoxicity. The low intestinal absorption rate of BZ carbamates may make it difficult for them to reach concentrations in the systemic circulation effective in treating cancers in humans. Increased bioavailability is necessary to enhance their antitumor effect, making them safe and well tolerable in human and veterinary use.

Figure 2. Pharmacokinetic properties and side effects of veterinary antiparasitic drugs. (a) The BZ carbamate drugs are poorly absorbed; have a wide distribution in the body; show extensive hepatic metabolism; and are excreted via feces and

urine. (b) The halogenated salicylanilides (HS) antiparasitic drugs show poor absorption, distribution throughout the body, are poorly metabolized and are excreted in bile, feces, or urine.

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Human	Hep G2 and Hep3B	in vitro	Mice	ABZ	HCC	Cytotoxicity	[<u>12]</u>
Human	Hep G2 and Hep3B, PLC/PRF/5 and SKHEP-1	in vitro					
	SKHEP-1	in vivo	Mice	ABZ	HCC	Tubulin disruption	[13]
Rat	HTC, Novikoff	in vitro					
Mice	Hep1-6	in vitro					
	SW480, SW620,			ABZ,			
Human	HCT8 and Caco2	in vitro	Mice	RBZ,	Intestinal cancer	Tubulin disruption	[<u>14]</u>
				FLU			
Human	HT-29	in vitro	Mice	ABZ	CRC	Apoptosis	[15]
Human	CEM/dEpoB300	in vitro	Mice	ABZ	Leukemia	Apoptosis	[16]
Human	1A9Pc TX22	in vitro	Mice	ABZ	OC	Apoptosis	[17]
		in vitro			Mammary		[18]
Mouse	EMT6	in vivo	Mice	FZ	carcinoma	Cytotoxicity	[10]
Human	H460 and A549	in vitro in vivo	nu/nu mice	FZ	LC	microtubule disruption, p53 activation and down regulation of pivotal glycolytic enzymes	[19]
Human	P493-6	in vitro in vivo	SCID mice	FZ	Lymphoma	Tubulin disruption	[20]

Table 1. Anticancer activity of BZ carbamates.

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Mice	EMT6	in vitro in vivo	BALB/c Rw mice	FZ	Mammary carcinoma	Tubulin disruption	[21]
Human	OCI-AML-2	in vitro in vivo	SCID mice	FLU	Leukaemia and Myeloma	Tubulin disruption	[22]
Human	MDA-MB-231, BT-549, SK-BR-3 and MCF-7	in vitro in vivo	Mice	FLU	BC	Tubulin disruption	[23]
Human	TNBC cell lines MDA-MB-231 and MDA-MB- 468	in vitro in vivo	Mice	FLU	ВС	Apoptosis	[24]
Human	BT474, SK-BR-3, MDA-MB-453, JIMT-1	in vitro in vivo	BALB/c mice	FLU	BC	Tubulin disruption Apoptosis	<u>[25]</u>
Human	HCT116, RKO and SW480	in vitro in vivo	BALB/c mice	FLU	CRC	Apoptosis	[<u>26</u>]
Human	H295R and SW- 13	in vitro	Mice	MZ	Adrenocortical carcinoma	Apoptosis	[27]
Human	H460, A549, H1299 and WI- 38	in vitro in vivo	Mice	MZ	LC	Tubulin disruption, Apoptosis	[<u>28]</u>
Human	HCT 116 and RKO	in silico	-	MZ	сс	Tubulin disruption	[<u>29]</u>
Human	DLD-1, HCT-116, HT-29 and SW480	in vitro	Mice	MZ	сс	Tubulin disruption	[30]
Human	ACP-02, ACP-03 and AGP-01	in vitro in vivo	Mice	MZ	GC	Tubulin disruption	<u>[31]</u>

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Mouse	GL261	in vitro	C57BL6 Mice	MZ	Brain tumour	Tubulin disruption	[<u>32]</u>
		in vivo				Apoptosis	
Human	GBM U87-MG, D54, H80, H247, H392, H397, H502 and H566	in vitro in vivo	C57BL/6 mice	MZ	Brain cancer	Apoptosis	[<u>33]</u>
Mouse	GL261						
Human	D425 MB	in vivo	p53 mice	MZ	Medullo- blastoma	Tubulin disruption	[34]
Human	293T and hTERT-RPE1	in vitro in vivo	<i>nu/nu</i> athymic mice	MZ	Medullo- blastoma	Hedgehog inhibitor	[35]
Murine	CP2 and SP1	in vitro in vivo	BALB/c mice	MZ	PC	Tubulin disruption	[<u>36]</u>
Human	KKU-M213	in vitro in vivo	Nude mice	MZ	Bile duct Cancer	Apoptosis	[<u>37]</u>
Human	PANC-1	in vitro	Mice	MZ	Pancreatic cancer	-	[38]
Human	CAL27 and HCC15	in vitro in vivo	Nude mice	MZ	Head and neck cancer	Apoptosis	[39]
Human	SK-Br-3	in vivo	Mice	MZ	BC	Tubulin disruption	[<u>40]</u>
Human	M-14 and SK- Mel-19	in vitro	Mice	MZ	Melanoma	Tubulin disruption	[41]
Human	MM622, MM540, D08, MM329, D17, and UACC1097	in vitro in vivo	Mice	MZ	Melanoma	Tubulin disruption	[42]

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Human	NRAS ^{Q61K}	in vitro in vivo in silico	Athymic mice	MZ	Melanoma	Apoptosis	[<u>43]</u>
Human	GL261	in vitro in vivo	C57BL/6 mice	MZ	Brain cancer	Tubulin disruption	[44]
Human	Burkitt's lymphoma Ramos cells, Hela cells, PANC-1 cells, and HepG2 cells	in vivo	Zebra-fish	Closantel	Lymphoma, cervical cancer, PC, and LC	Suppression of antiangiogenesis and Closantel	[<u>45]</u>
Human	Du146	in vitro	Mice	Nic	PC	Inhibition of STAT3 Pathway	[46]
Human	HEK293 cells	in vitro	Mice	Nic	PC and BC	Inhibition of Wnt/ β-catenin Pathway	[<u>47]</u>
Human	MCF7 and MDA- MB-231	in vitro in vivo	NOD/SCID mice	Nic	BC	Apoptosis and downregulation stem pathways	[48]
Human	MDA-MB-231	in vitro in vivo	BALB/c nude mice	Nic and cisplatin	BC	Apoptosis and inhibition of Akt, ERK, and Src pathways	[49]
Human	MDA-MB-468 and MCF-7	in vitro	Mice	Nic	BC	Inhibition of cell motility and STAT3 activity	[50]
Human	TNBC MDA-MB- 231, MDA-MB- 468 and Hs578T	in vitro in vivo	Athymic nude mice	Nic	BC	Inhibition of Wnt/ β-catenin Pathway	[51]

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Mouse	4T1	in vitro in vivo	BALB/c mice	Nic	BC	Apoptosis and suppression of cell migration	[52]
Human	MDA-MB-231, MDA-MB-468 and MCF-7	in vitro	nnce			and invasion	
Human	2LMP, SUM159, HCC1187, and HCC1143	in vitro in vivo	NOD/ SCID mice	Nic	BC	Cytotoxicity	[53]
Human	K562 and KBM5- T315I cells	in vitro in vivo	NOD mice	Nic	Chronic myelogenous leukemia	Inhibition of FOXM1/β- catenin Pathway	[54]
Human	HL-60, U937, OCI-AML3, Molm13, MV4- 11, and U266 cells	in vitro in vivo	BALB/c mice	Nic	Acute myelogenous leukemia	Apoptosis and Inhibition of NF- κΒ pathway	[<u>55]</u>
	MCF7 HCC1954	in vitro			Adeno- carcinoma Carcinoma		
Human	BT-474 MDA-MB-361 and	in vivo	Mice	Nic	Ductal Carcinoma Adeno- carcinoma	Inhibition of PI3K-dependent signalling	(<u>56</u>)
	SKBR3 cell	in silico			Adeno- carcinoma		
Human	HCT116, SW620, and HT29	in vivo	Mice	Nic	сс	Inhibition of STAT3 phosphorylation	[57]
Human	HCT116, SW480, DLD1 and 293 cells	in vitro in vivo	APC-MIN mice	Nic	сс	Inhibition of Wnt/Snail- mediated EMT	<u>[58]</u>

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Human	HCT116, SW620, LS174T, SW480, and DLD-1	in vitro in vivo in situ	NOD/SCID mice	Nic	СС	Inhibition of S100A4-induced metastasis formation	<u>[59]</u>
Human	HT29, HCT116, CaCO2 and MCF-10A	in vitro in vivo	NOD/SCID mice	Nic	сс	Inhibition of Wnt/ β-catenin Pathway	[60]
Human	HEK293T, U2OS, WIDR, DLD-1, CRC 240, COLO205, CRC57 and HCT116	in vitro	Mice	Nic	СС	Induction of autophagy and inhibition of Wnt/ β-catenin Pathway	[<u>61]</u>
Human	SW480 and SW620	in vitro	Mice	Nic	сс	Reduction of Wnt activity	[<u>62]</u>
Rodent	CC531	in vivo					
Murine	MC38	in vitro in vivo					
Human	HCT116	in vitro	APC ^{min/+} mouse	Nic-EN and oxyclozanide	СС	Mitochondrial uncoupling	[63]
Rodent	C2C12	in vitro in vivo					
Human	SKOV3 and CP70	in vitro in vivo	SCID mice	Nic	OC	Induction of metabolic shift to glycolysis	[<u>64]</u>
Human	OVCAR-3, SKOV-3 and A2780	in vitro in vivo	NOD/ SCID mice	Nic	OC	Inhibition of CP70sps and primary OTICs	[<u>65]</u>
Human	SKOV3.ip1	in vitro in vivo	Mice	Nic	OC	Inhibition of Wnt/ β-catenin Pathway	[66]

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Human	SKOV3 and HO8910	in vitro in vivo	Athymic Nude mice	Nic	OC	Mitochondrial Respiration and aerobic glycolysis	[<u>67]</u>
Human	A2780ip2, A2780cp20, and SKOV3Trip2	in vitro in vivo	SCID mice	Nic	OC	Inhibition of Wnt/ β-catenin, mTOR and STAT3 pathways	<u>[68]</u>
Human	Tumorspheres	in vitro in vivo	Mice	Nic and its analogs in combination with carboplatin	OC	Cytotoxicity	<u>[69]</u>
Human	HepG2 and QGY7701	in vitro	Mice	Nic	НСС	Apoptosis and suppression of ATF3 expression	[70]
Human	NSCLC, NCI- H1299 and HCT116	in vitro	Mice	Nic	LC	Apoptosis through ROS- mediated p38 MAPK-c-Jun activation	[71]
Human	SK-Hep-1 and Huh7	in vitro	Mice	Nic	HCC	Inhibition of metastasis of HCC, and CD10	[72]
Human	HCC827, H1650, and H1975	in vitro in vivo	Nu/Nu nude mice	Nic	LC	Inhibition of STAT3 phosphorylation	[73]
Human	A549/DDP	in vitro	Mice	Nic combined with cisplatin (DDP)	Cisplatin- resistant LC	Apoptosis and reduction of c- myc protein	[<u>74</u>]
Human	HepG2, QGY- 7703 and SMMC-7721	in vitro	Mice	Nic	НСС	Inhibition of cell growth and STAT3 pathway	[75]

Cell Source	Cell Lines	Procedure of Study	Species	Antiparasitics	Cancer Type	Target Pathway	Reference
Human	Lung adenocarcinoma (549, EKVX, H358, Hop62, H322M, H522, H838, and H23), large cell lung carcinoma (H460, Hop92), NCSLC (H1299, H810) and small cell LC (H82)	in vitro	Mice	Nic	LC	Reduction in proliferation and inhibition of S100A4 protein	[<u>76]</u>
Human	U-87 MG	in vitro	Mice	Nic	Glioblastoma	Cell toxicity and inhibition of Wnt/ β-catenin, PI3K/AKT, MAPK/ERK, and STAT3	[77]
Human	TS15-88, GSC11	in vitro in vivo	Athymic nude mice	Nic and/or temo- zolomide	Glioblastoma	Inhibition of the expression of epithelial- mesenchymal transition-related markers, Zeb1, N-cadherin, and β-catenin	(<u>78</u>)
Human	LN229, T98G, U87(MG), U138, and U373(MG)	in vitro in vivo	Rag2 ^{-/} -II2rg ^{-/-} and SCID/ Beige mice	Nic	Glioblastoma	Cytotoxicity and diminished the pGBMs' malignant potential	[<u>79]</u>
Human	C4-2B, LNCaP and DU145	in vitro	Mice	Nic with enzalutamide	Enzalutamide resistance PC	Inhibition of migration, invasion and IL6-Stat3-AR pathway	[80]
Human	LNCaP, VcaP, CWR22Rv1, PC3 and HEK293	in vitro in vivo	SCID mice	Nic with enzalutamide	Castration- resistant PC	Inhibition of AR variant and enzalutamide- resistant tumor growth	[<u>81]</u>

~ •		Procedure	C	A		Tennish D. H	Defen
Referen	Cell Lines ICES	of Study	Species	Antiparasitics	Туре	Target Pathway	Reference
	S.;_Kumar, S.; Ka BM C a©b¢mel2a,1	. ,	mh <u>an, B. Be</u>	nzimidazole sca	ffolds as promis	sing antiproliferative ac	gents: A
	cti₽₽Ъ₽₽drXi₽₽e₽C					Janku, F. Challenges a 2019, 79, 87, 89, 80, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	.nd [<u>82]</u>
Rev. Di	rug Discov. 2012	11, 191–200.	-			harmaceutical R&D ef	-
I. Cha, Y. H ⊡nuagn re	; Erez, T.; Reyno KYAE-1, OE3 purposing from t SK-GT-4, and	lds, I.J.; Kumar, he perspective (D.; Ross, J.; of Philmaice	; Koytiger, G.; Kı utical co hip anies	usko, R.; Zeskin Esophagea 5. Br. J. Pharma cancer	nd, B.: Risso, S.: Kaga Inhibition of WhV Icol. 2017, 175, 168–1 B-catenin	n, E.; et al. 80. ^[83]
	L.; Kvi e<u>mis</u>ki , M omising molecule	-				lho, D.W.; Pedrosa, R	. Albendazo
i. Pantzia H(RRAP	urka, P.; Bouche, BE3.CE48T/VG Project. Ecance and CE81T/VG	H ermedi çalşæie nce	Sukhatme, \ e 201 /}⊮ic & 44	/.; Sukhatme, V. 2. Nic	P.; Vikas, P. The Esophagea cancer	e Rep unpiosiog Dirugs i I proliferation and	n Oncology [<u>84]</u>
		Davis, C.; Byard				oenzimitazaleathuraum	iintic
utubulin,	in Viste Basener	A. Pharmacol. 19	985, 34, 107	3–1077. _{Nic}	Osteosarcon	s as in Apoptosis and target multiple na	[85]
						signaling ncer 2004, 4, 253–265 pathways	
Cats A	nainst Roundwor	ms and Tapewo	rms. Parasiti	pedia.net. 2015.	Available online	s, Pig, Poultry, Horses, e: nid=2785 (accessed o al cell-cycle arrest	-
L. Lacey,	SW-13 E.; Watson, T.R. pulin polymerizat			bamates agains		i mitochondrial leukaeញរុត្តឲ្យអ្វីត្រត្តorro	elation with
. Rolin, S human	S.; Amri, H.SE.; liver microsomes	Batt, AM.; Lev s and hepatoma	y, M.; Bagrel cell lines. Ce	, D.; Siest, G. St ell Biol. Toxicol. :	udy of the in vit 1989, 5, 1–14.	ro bioactivation of alpo proliferation,	endazole in
H eman gh hepato	olaanaandwaada cellular carcinom	; 1 .; Almajd, R.; a cells by alben	Athymic Akhter, J.: Bo nudė mice dazole. Cano	owery, PŅ i Ølorris cer Lett. 2001, 10	Renal cell , D. In vitro and carcinoma 65, 43–49.	in vivorsignations and o	f grow <mark>[87]</mark> of
	nintics albendazo					progression proliferative effect of b lines. Anti-Cancer Dru Inhibition of	
colorec		e HT-29: In vitro				endazole against the h inomatosts. Cancer C extracellular	
6. Khalilza H Q®® //dl 407–41	EpoB300 are ser	o, K.T.; Morris, D Insitive io albe nd).L.; Pourgho azole ∕/i¤e olv	olami, M.H. Epotl ement o Na popto	hilone-paclitaxe tic p ର୍ଘୀଶ୍ୟରନ୍ତ େ ଞ	matrix I resistant leukemic ce remodeling, and lochem. Pharmacol. 2 metastasis	ells 007, 7 ^{888]}
						through polyme risstion attion pro cer Re svi200&շ28 nia79	
3. Sharma 2018.	a, Y. Veterinary D	rug May Be Rej	ourposed for	Human Cancers	s: Study. The Hi	indu Busi <mark>fi@Sali</mark> nfle, 27 pathway	' August
						ncer Res. 2013, 33, 35	
). Dogra, Human Cancer	n.;Horoana19 Ceizgeathdrm9	dulating multiple	. Fe ble bolaz e callularmati	ole acts as a mo hways. Sci. Rep	oderatevmi@petul . 2018m8ei6h920	Apoptosis and bule destabilizing ager inhibition of DNA 6.	nt and cause
	; Dang, C.V.; Wa mentary vitamins			•		synthesis when combined with	

22. Duan, Q.; Liu, Y.; Booth, C.J.; Rockwell, S. Use of fenbendazole-containing therapeutic diets for mice in experimental cancer therapy studies. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 224–230.

- 23. Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Zavareh, R.B.; Cell al. The antihelmintic flubenda26flu/fmibits pricrotubula functions in distinct from Vinca alkaloidace Salter displays preclinical activity first Ukkemia and myeloma. Blood 2010, 115e 4824–4833.
- 24. Hou, Z.-J.; Luo, X.; Zhang, W.; Peng, F.; Cui, B.; Wu, S.-J.; Zheng, F.-M.; Xu, J.; Xu, L.-Z.; Long, Z.-J.; et al. Flubendazole, FDA-approved antherminic, targets breast cancer stem-like cells. Oncotarget 2015, 6, 6326–6340.
- BALB/c Inhibition of 25Hkmany.; On 481; action 437;5Jang, S.; Park, J.M.; Park, S.; Park, Fkr X Kim, J.Y.Sise 6,au 44. An anthelminitic drug, 25Hkmany.; On 481; action 437;5Jang, S.; Park, J.M.; Park, S.; Park, Fkr X Kim, J.Y.Sise 6,au 44. Anthelminitic drug, 201 flubendazole, exerts antitumori after the properties in triple-negative breast cancer via targeting cancer stem-like properties. Cancer Res. 2019, 79, 703.
- 26. Kim, Y.-J.; Sung, D.; Oh, E.; Chovitro Cho, T.-M.; Farrand, L.; Seo, J.H.; Kim, J.Y. Flubendazole overcomes trastuzumab resistance by Tardening cancer stem-like properties and HER2 signaling in HER2-positive break of the stander of the standard strategy of the standa
- 27. Lin, S.; Yang, L.; Yao, Y.; Xu, L.; Xiang, Y.; Zhao, H.; Wang, L.; Zuo, Z.; Huang, X.; Zhao, C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J. Exp. Clin. Cancer Res. 2019, 38, 293. HCT-116 and BALB/c Induction of ICD [92]
- Human RFX CRC Provide RFX CRC
- 29. Sasaki, J.-I.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancel cells. Mol. Cancer Ther. 2002, 1, 1361-1309 and in vitro BALB/c RFX GC PI3K/Akt/mTOR [93]
- 30. Nygren, B.ĢFry紀違気形, Agerup, B.; Larsが代知?解释positioning of the anthelmintic drug mebergazole for the treatment signaling for colon cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 2133–2140.
- 31. Williamson, T.; Bai, R.-Y.; Staedtke, V.; Huso, D.; Riggins, G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 2016, 7, 68571–68584.

32upMed, LCoopgleases, elan.; and heitor Jolata program of BZ carbaneterinti A BZ+g and ended and the BO bible ground and graves for a cool invasion of the adapter. Invasting the matter of BZ carbaneterinti A BZ+g and ended and the BO bible ground and graves for a cool invasion of the adapter. Invasted and the adapter of BZ messan 20, 90 and the adapter of the adapter of the adapter of the adapter. Invastor of the adapter of the adapter

32.3 A micanite Alexivity of BZ Carbaniates in Cupinsa Model Barasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-Oncology 2011, 13, 974–982.

A pilot study of the effect of ABZ in seven patients with advanced hepatocellular carcinoma and CRC with hepatic 35. Bodhinayake, I.; Symons, M.; Boockvar, J.A. Repurposing Mebendazole for the Treatment of Medulloblastoma. metastases refractory to other forms of therapy was performed for 28 days. Patients received ABZ orally (10 mg/kg/day) in Neurosurgery 2015, 76, N15–N16.

two divided doses. The levels of tumor markers, carcinoembryonic antigen, and a fetoprotein were measured routinely. 36 Larsen A.B. Bai B. Atochung and Borodovsky An Rudin C. Riggins G.J. Bunz Fitepurposing the Antihelmintic Iver The parameters of hematological and blocchemical reduces were alles obtained to monitor bulle marrow, kidney, and liver Monordovsky Anticices were alles obtained to monitor bulle marrow, kidney, and liver

Mebendazole as a Hedgehog Inhibitor, Mol. Cancer Ther. 2014, 14, 3–13. toxicities. The results of this research further confirm the tolerance for ABZ in patients, with the only side effect of concern

37eiRgstoweetheuroteenia Kn; theeningetopaesnis, Noreenin, SABZneignificaatharksu EedDwiesu Aorstnarkers An Radebaltents, while unghted offen upageing spectraidensifies ensteendeed, laan onstraatigenalidetz toossesse sewith doorstraction prostates [94] cancer treatment. Br. J. Cancer 2019, 122, 517–527.

38. Sawanyawisuth, K.; Williamson, T.; Wongkham, S.; Riggins, G.J. Effect of the antiparasitic drug mebendazole on At present no clinical study on FLU and FZ in human malignancies has been conducted. A more thorough report on cholanglocarcinoma growth. South Asian J. Trop. Med. Public Health 2014, 45, 1264–1270. clinical trials documenting the antitumor effects of antiparasitic drugs is summarized in **Table 2**.

39. Varbanov, H.P.; Kuttler, F.; Banfi, D.; Turcatti, G.; Dyson, P.J. Repositioning approved drugs for the treatment of problematics. Approximation of the treatment of problematics. Approximation of the treatment of the treatme

- 40. Zhang, F.; Li, Y.; Zhang, H.; Huang, E.; Gao, L.; Luo, W.; Wei, Q.; Fan, J.; Song, D.; Liao, J. Anthelmintic mebendazole enhances cisplatin's effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC). Oncotarget 2017, 8, 12968–12982.
- 41. Coyne, C.P.; Jones, T.; Bear, R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)- in Dual-combination with Epirubicin-(C3-amide)- against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole. J. Cancer Res. Ther. Oncol. 2014, 2, 203.
- 42. Doudican, N.; Rodriguez, A.; Osman, I.; Orlow, S. Mebendazole Induces Apoptosis via Bcl-2 Inactivation in Chemoresistant Melanoma Cells. Mol. Cancer Res. 2008, 6, 1308–1315.
- 43. Doudican, N.A.; Byron, S.A.; Pollock, P.M.; Orlow, S.J. XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts. Anti-Cancer Drugs 2013, 24, 181–188.

- 44. Simbulan-Rosenthal, C.M.; Dakshanamurthy, S.; Gaur, A.; Chen, Y.S.; Fang, H.B.; Abdussamad, M.; Zhou, H.; Zapas, Cancer Canc
- 45. Prichard, R.K. The metabolic profile of adult Fasciola hepatica obtained from rafoxanide-treated sheep. Parasitology 1978, 76, 277–288. Pilot Study Of
- 46. Li, Y.; Guo, B.; Xu, Z.; Li, B.; Callen Zhang, M.; Yu, Y.; Wang, H.; Shi, J.; Zhu, W. Rep Stabilized in garon drugs: A case study for identification of pBratiants Path 600E inhibitors via docking and bioassay. (Beidingen 2016, 6, 31074.
- 47. Zhu, X.-Y.; Xia, BHCityoH.-C.; Xu, Advanced Anglogenesis and Grancer Growing Program Wight and Control of the control of t
- On Serum Tumor 48. Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide as a New Markers/High Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. Incidence Of
- 49. Lu, W.; Lin, C.; Roberts, M.J.; Waudtrogenia Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS ONE 2011, 6, e29290.
- 50. Wang, Y.C.; Chao, T.K.; Chang, C.C.; Yo, Y.T.; Yu, M.H.; Lai, H.C. Drug screening identified nicles an inhibitor of breast cancer stem-like cells. PLoS ONE 2013, 8, e74538. from 1200 mg
- To determine the 51. Liu, J.; Chen, X.; Ward, T.; Pegsamse M. Shen, K. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal safety, tolerability, and tumor growth in cisplatin resistant triple-negative breast cancer. Tumor Biol. 2016, 37, 9825–9835. the maximal tolerated Decreased
- 52. Gyamfi, J.; Lee Refraction, B.S.; Chavin uniclosamide reverses adipagge induced epithelial research transition in breast cancer cells via suppression at efit be set of eukin-6/STAT3 signalling axis. Sci. Rep. 2019.9, 11336.
- 53. Yin, L.; Gao, Y.; Zhang, X.; Wang, J.; Ding, D.; Zhang, Y.; Zhang, J.; Chen, H. Niclosa**pidierstsristitz** as triple-negative pharmacokinetics and pharma
- 54. Ye, T.; Xiong, Y.; Yan, Y.; Xia, Y.; Song, X.; Liu, L.; Li, D.; Wang, N.-Y.; Zhang, L.; Zhu, Afall of Arthree Anthelmintic Drug Niclosamide Induces Apoptosis, Impairs Metastasis and Reduces Immunosuppressive Cele MB Breast Cancer Model. PLoS ONE 2014, 9, e85887.
- 55. Londoño-Joshi, A.I.; Arend, R.C., Arend, R.C., Arend, R.C., Lu, W.; Samant, R.S.; Metge, B.J.; Hidalgo, B.; Grizzle, W.E.; Conner, Well tolerated, M.; Forero-Torres, A.; et al. Effect of histopamide on Basal-like Breast Cancers. Mol. Cancer Ther. 2014, 13, 800–811. and the
- 56. Jin, B.; Wang, C.; Li, J.; Du, X.; Ding, K.; Pan, J. Anthelmintic Niclosamide Disrupts the **Interplayed** p65 and FOXM1/beta-caterinical d Eradicates Ecclementa Stence lis in Chronic Myenogenbus Leykemia films Cancer Res. 2017, 23, 789–803. carcinoma in Metastatic tumor control of MZ are
- Adrenocortical 57. Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineop**lasitio**rmechanisms of Carcinoma niclosamide in acute myelogenous leukemia stem cells: Inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010, 70, 2516–2527.
- Carrella, D.; Manni, I.; Tumaini, B.; Dattilo, R.; Papaccio, F.; Mutarelli, M.; Sirci, F.; Amoreo, C.A.; Mottolese, M.; Iezzi, M.; et al. Computational drugs repositioning dentifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Oncorarget 2016, 7, 58743–58758.
- Bedside: Tumour No disease-59. Shi, L.; Zheng, H.; Hu, W.; Zhou, B.; Dai, X.; Zhang, Y.; Liu, ZRewosition diversion By The Remission By The STAWZ synergizes with erlotinib in human colon cances. Oncotranges in the karcer, 10, 1767–1776. Antihelmintic Drug
- 60. Ahn, S.; Kim, N.H.; Lee, K.; Chaeled data and Id.H.; Cha, S.; Cho, E.S.; Lee, Y.; Cha, J.Swelleroutha, et al. Niclosamide is a potential therapeutic for familial relevant sis polyposis by disrupting Axin-GSK3 interaction. Oncotarget 2017, 8, 31842–31855. Metastatic Colon
- Sack, U.; Walther, W.; Scudiero, D. Sourge, M.; Kobelt, D.; Lemm, M.; Fichtner, I.; Schlag, P.M.; Shoemaker, R.H.; Stein, U. Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer. JNCI J. Natl. Cancer Inst. 2011, 103, 1018–1036. Meteridazole In
- 62. Osada, T.; Chen, M.; Yang, X. Yewapatsiajewitsed VanDeusen, JTB. filts the Dhighest, B.M.; Clay, T.M.; Chen, W.; Morse, M.A.; et al. Antiheleninth Compound Niclestand Downregulates dyst Signating and Elicits Antitumor Responses in Tumpers with Activating APC Methodes Patience Res. 2011, 71eft 2nd 92 MZ to NCT01729260
- 63. Wang, J.; Ren, X.-R.; Plao, H.; ZH&O; Sivingsada, T.; Premon制架空机, More and Construction and Constructio
- 64. Monin, M.B.; Krause, P.; Stelling, R.; Bocuk, D.; Niebert, S.; Klemm, F.; Pukrop, T.; Koenig, S. The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling

pathway. J. Surg. Res. 2016, 203, 193–205.

- 65. Attasators M.; Swapnatle V.T.; Tao, H.; Guðhase Collawters a.; Fadhil, N.; Monethouse Rest. Jin, Stentifier Gref mitochondrial un Webplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018, 9, 215.
- 66. Lin, C.-K.; Bai, M.-Y.; Hu, T.-MA, 砂油号, 小Study Chao, T.-K.; Weng, Y.-C.; Huang, R.-L.; Su, P.-H.; Lai, H.-C. Preclinical evaluation of a nanoformulate of a Mathematic in Toal Hange in Toal Hang
- MZ for the Treatment 1 safety and efficacy of Recruiting NCT01837862 67. Yo, Y.-T.; Lin, Y.-WioWasg, Y.-C.; Balch, C.; Huang, R.L.; Chan, M.; Sytwu, H.-K.; Chen, C.-K.; Chang, C.-C.; Nephew, K.P.; et al. Growth Inhibition of Ovarian Tumor–Initiating Cells by Niclosamide. Mol. Cancer Ther. 2012, 11, 1703–1712. Gliomas
- 68. Arend, R.C.; Londono-Joshi, A.I.; Samant, R.S.; Li, Y.; Conner, M.; Hidalgo, B.; Alvarez, R.D.; Landen, C.N.; Straughn, J.M.; Buchsbaum, D.J. Inhibition of Wnt/beta-catenin pathway by niclosamide: A therapeutic target for ovarian cancer. Gynecol. Oncol G1014, 134, 112 Clipical Safety 1
- and Efficacy
 69. Shangguan, F.; Liu, Y.; Ma, L.; Qu, G.; Lv, Q.; An, J.; Yang, S.; Lu, B.; Cao, Q. Niclosamide inhibits ovarian carcinoma Study of Study of Study of Terminated Mebendazole on Terminated
- 70. Areno, R.C.; Londono-Joshi, A.I. Geangrador A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and its analogs are potent inhibitods of Wint beta-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotanget 2016 Know R8680 JgR6815.
- 71. Walters Haygood, C.L.; Arend, R(Bep@M@)ade, A.; Chettiar, S.; Regan, N.; Hassmann, C.J.; Li, P.-K.; Hidalgo, B.; Straughn, J.M.; Buchsbaum, D.J. Niclosamide Analogs for Treatment of Ovarian Cancer. Int. J. Gynecol. Cancer 2015, 25, 1377–1385.
- 72. Weng, S.; Zhou, L.; Deng, Q.; Wang, J.; Yu, Y.; Zhu, J.; Yuan, & Mana and activation of PERK in Stepher Report of the carcinoma celleg RMA Gastrogate rol. 2016, 16, 25.
- 73. Lee, S.-L.; Son, A.R.; Ahn, J.S. Schy, Toler. Aviility samide enhances here in a samide enhances here. 2014, 68, def to cancer patients for cancer patients
- 74. Chienz M.-H.; HooVattanYang, S.-F.; Yang, Y.-C.; Lai, S.-Y.; Chen, W.-S.; Chen, M.-J.; Yeh, C.-B. Niclosand (2200 108/1) combination antihelmintic drugpiexeliaits antimetastatic activity in hepatocellular carcinoma cells through downregulating twistmediated CD10 expression. Environ. Toxicol. 2018, 33, 659–669. Cancer between the degree
- 75. Li, R.; Hu, Z.; Sun, S.-Y.; Chen, Z.G.; Owonikoko, T.K.; Sica, G.L.; Ramalingam, S.S.; Curran, W.J.; Khuri, F.R.; Deng, X. Niclosamide Overcomes Acquired Resistance to Erlotinib through Suppression of STAT3 in Non–Small Cell Lung Cancer. Mol. Cancer Ther. 2013, 12, 2200–2212. biochemical markers
- 76. Zuo, Y.; Yang, D.; Yu, Y.; Xiang, M.; Li, H.; Yang, J.; Li, J.; Jiang, D.; Zhou, H.; Xu, Z.; et al. Niclosamide enhances the cytotoxic effect of cisplatin in cisplatin-resistant human lung cancer cells via suppression of lung resistance-related Mebendazole as protein and c-myc. Mol. Med. Rep. 2017, 17, 3497–3502. MZ as adjuvant
- 77. Wang, C.; Zhou, X.; Xu, H.; Shi_{TX: Than}, Yang, M; Zhang, Q; Zhang, Yang, M; Zhang, Yang, K; Zhang, Yang, K; Zhang, Yang, K; Zhang, Yang, Y
- 78. Stewart, R.L.; Carpenter, B.L.; West, D.S.; Knifley, T.; Liu, L.; Wang, C.; Weiss, H.L.; Gal, T.S.; Durbin, E.B.; Arnold, S.M.; et al. S100A4 drives non-small cell lung cancer invasion, associates with poor prognosis, and is effectively Nicosamide in To determine the Nicosamide anti-helminthic agent niclosamide. Oncotarget 2016, 7, **34660n346042**. NCT02687009
- 79. Cheng, B.; Morales, L.D.; Zhangeret Mile Colorisin, A. Niclosamide adduct a big of the subscription of
- 80. Oh, H.-C.; Shim, J.-K.; Park, J.; Lee, J.-H.; Choi, R.J.; Kim, N.H.; Kim, H.S.; Moon, J.H.; Kim, E.H.; Chang, J.H.; et al. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. J. Cancer Res. Clin. Oncol. 2020, 146, 2817–2828. Investigate the
- 81. Wieland, A.; Trageser, D.; Gogologafety Reithartz, R.; Höfer, H.; Keller, M.; Leinhaas, A.; Schelle, R.; Normann, S.; Klaas, L.; et al. Anticancer Effectseffdielospamide in Human Glioblastoma. Clin. Cancer Res. 2013, 19, 4124–4136.
- 82. Liu, C.; Lou, W.; Armstrong, C.; Aiclosanidans, C.P.; Gao, A.C. Nickstanidae Staffbresses cell migration and invasion in enzalignamide resistant prostate data in the staff of the staf
- With Metastases 83. Liu, C.; Lou, W.; Zhu, Y.; Nadiminty, N.; Schwartz, C.T.; Evans, C.P.; Gao, A.C. Niclosamide Inhibits Androgen Receptor of a Colorectal Variants Expression and Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2014, 20, 3198–3210.
- Progressing After 84. Chen, L.; Wang, L.; Shen, H.; Lin, H.; Li, D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem. Biophys. Res. Commun. 2017, 484,

416–421. Cancer

85.4Winawsiilins, H.; Yuan, J.; Yadithe Targeting Wnt/berastenin Winanghelmintic drug nic Statin (Resvercom espatiant Ref resistance in establing cancer. Fundam. Clin. Pharmacol. 2021, 35, 165–173.

- 86. Lee, M.; Chen, Y.; Hsu, Y.; Lin, B. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to cheliforna enhances. Oncol. Rep. 2019, 43, 549–561.
- Enzalutamide in 87. Liao, Z.; Nan, G.; Yan, Z.; Zeng, L.; Deng, Y.; Ye, J.; Zhang, Zo; @iteomivineltheRsidDenduluri, S.; et al. The Anthelmintic DrugiNiclosamide Iphybits the Proliferative Activity of Humaner tessare onest Completed (No With Castration Pathways. Curr. Cancer Drug Ingets 2015, 15, 726–738. Resistant,
- 88. Satoh, K.; Zhang, L.; Zhang, Y.; Chelluri, R.; Boufraqech, M.; Nilubol, N.; Patel, D.; Shen, M.; Kebebew, E. Identification of Niclosamide as a Novel Anticancer Agent for Adrenocortical Carcinoma. Clin. Cancer Res. 2016, 22, 3458–3466.
- 89. Swan, G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. J. S. Afr. Vet. Assoc. 1999, 70, 61–70. Enzalutamide and
- 90. Xiao, W.; Xu, Z.; Chang, S.; Li, big los an Didevin, H.; Xie, Y.; Wang left ratio an organohalogen drug, triggers a provide attentell cycle arrest dios and big elforates by enhancing DNA damage Recurrent responses and suppressing the path and the path way. Cancer Left Ni201/AleA444/ve5-59. Recruiting NCT03123978
- 91. Gooyit, M.; Janda, K.D. Reprofiled antheminitics abate hypervirulet stationary-phase Clostridium difficile. Sci. Rep. 2016, 6, 33642. Stage IV Resistant PC
- Stage IV Resistant PC 92. Shi, X.; Li, H.; Shi, βċ Yao, H.; Ke, K.; Dong, C.; Zhu, Y.; Qin, Y.; Ding, Y.; He, Y.H.; et al. Discovery of rafoxanide as a dual CDK4/6 inhibitor for the treatment of skin cancer. Oncol. Rep. 2018, 40, 1592–1600.
- 93. Laudisi, F.; Di Grazia, A.: De Simone, V.; Cherubini, F.; Colantoni, A.; Ortenzi, A.; Franzè, E.; Dinallo, V.; Di Fusco, D.; Monteleone, I.; et al. Induction of endoplasmic reticulum stress and inhibition of colon carcinogenesis by the antihelmintic drug rafoxaoide. Cancer Lett. 2019, 462, 1–11. Acetate, effects and how well
- 94. Morris, D.L.; Jourdan, J.-L.; Pourpholamie, M.H. Pilot Study of Abendazele in Patients with Advanced Malignancy. Oncology 2001, feloufferme. Prednisone in 2 Nic, and prednisone Recruiting NCT02807805
- 95. De Witt, M.; Gamble, A.; Hanstmeating Martientisz, D.; Powell, C., Work assireating tas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Faculty Opinions racignmeendation of Repurposing matienda and a replacement for vincristine for the treatment of brais tumo f. Mol. Mesis 2017 23, 50–56. hormone-resistant PC
- 96. Tippens, J. My Canter Story Rocks. Get Busy Living. 2018. Available online: https://www.mycancerstory.rocks/ (accessed on 26 February 2021).

97. Dobrosotskaya, I.Y.; Hammer, G.D.; Schteingart, D.E.; Maturen, K.E.; Worden, F.P. Mebendazole monotherapy and NCBI database was used to inquire about the clinical trials on antitumor effects of antiparasitic drugs. ABZ—albendazole; long-term disease control in metastatic adrenocortical carcinoma. Endocr. Pract. 2011, 17, e59–e62. MZ—mebendazole, Nic—niclosamide, CS—clinical study; CC—colon cancer; CRC—colorectal cancer; HCC—

M2—Incoendazole, Mic—Inclosannue, CS—clinical study, CC—color cancer, CRC—colorectal cancer, HCC—
 William, Calcinoma, FS. P. International Study.
 Science 1967, 158, 1694–1695.

9.3. March 19. 3. Performed and the energy metabolism of Fasciola hepatica. Int. J. Parasitol. 1977, 7, 217–220.

Salicylanilides are a very large group of compounds that show efficient activity against certain types of parasites. Their basic chemical structure consists of a salicylic acid ring and an anilide ring. Examples of HS drugs with potent Retrieved from https://encyclopedia.pub/entry/history/show/54232 antihemininic activity are Nic, ratoxanide (RFX), and closanter.

3.1. Mechanism of Action of HS

The primary mechanism of action of HS was investigated in vitro using houseflies and rat liver mitochondria. The authors found an association with the uncoupling of oxidative phosphorylation that halts the production of ATP. This seems to happen through the suppression of the activity of two enzymes, succinate dehydrogenase and fumarate reductase, and thus impairs the motility of parasites and eventually causes death ^[98]. Several researchers have subsequently confirmed the proposed mechanism in vivo ^{[45][99]}.

3.2. Anticancer Activity of HS

Several HS group drugs have been investigated for their effect on cancer in experimental and preclinical models. The pharmacokinetic properties and common side effects of HS drugs are shown in **Figure 2**b.

3.3. Anticancer Activity of HS in Clinical Models

Nic underwent clinical trials in patients with resectable colon cancer in 2017, but was terminated because of the low enrolment rate (NCT02687009). Two other clinical studies are currently underway to test the anticancer effects of Nic in patients with FAP (NCT04296851) and progression of metastases of colorectal cancer after therapy (NCT02519582). Although a phase I trial of Nic administered together with enzalutamide in patients with castration-resistant prostate cancer has concluded, anticipating the commencement of a phase 2 trial (NCT02532114), another phase I clinical trial is investigating the potent dose and side effects of Nic in combination with enzalutamide to treat castration-resistant prostate cancer patients (NCT03123978). A phase II clinical trial is also ongoing to evaluate the efficacy of abiraterone acetate, Nic, and prednisone in treating patients with hormone-resistant prostate cancer (NCT02807805).