
AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 1/20

AI-Supported Programming Tasks
Subjects: Computer Science, Artificial Intelligence

Contributor: Sotiris Kotsiantis , Vassilios Verykios , Manolis Tzagarakis

AI-assisted programming or development is defined as the utilization of machine learning models trained on the

vast amount of available source code. Its purpose is to support various aspects of programming and, more broadly,

software engineering implementation tasks.

AI-assisted programming code embeddings transformers

1. Code Summarization

Code summarization involves generating natural language descriptions for source code written in various

programming languages, primarily to support documentation generation. During this process, input source code is

transformed into a descriptive narrative, typically in English, providing an overview of the code’s functionality at the

function level.

An enhanced code embedding approach known as Flow2Vec improved the representation of inter-procedural

program dependence (value flows) with precision. It accommodated control flows and data flows with alias

recognition, mapping them into a low-dimensional vector space. Experiments on 32 open-source projects

demonstrated Flow2Vec’s effectiveness in enhancing the performance of existing code embedding techniques for

code classification and code summarization tasks.

Transformers play a crucial role in generating summaries, involving preprocessing the text by removing

unnecessary characters and segmenting them into smaller sentences or phrases. The transformer model, trained

on extensive text data, utilizes its attention mechanism to identify key words and phrases, producing a summary

based on these essential elements.

Wang et al. introduced Fret, a functional reinforced transformer with BERT, which outperformed existing

approaches in both Java and Python. Achieving a BLEU-4 score of 24.32 and a ROUGE-L score of 40.12, Fret

demonstrated superior performance in automatic code summarization. For smart contracts, Yang et al. proposed

a multi-modal transformer-based code summarization model, showcasing its ability to generate higher-quality code

comments compared to state-of-the-art baselines.

Hou et al. presented TreeXFMR, an automatic code summarization paradigm with hierarchical attention, using

abstract syntax trees and positional encoding for code representation. Pre-trained and tested on GitHub,

TreeXFMR achieved significantly better results than baseline methods.

[1]

[2]

[3]

[4]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 2/20

GypSum incorporated a graph attention network and a pre-trained programming and natural language model for

code summarization. Utilizing a dual-copy mechanism, GypSum achieved effective hybrid representations and

improved the summary generation process. Gu et al. introduced AdaMo, a method for automated code

summarization leveraging adaptive strategies like pre-training and intermediate fine-tuning to optimize latent

representations.

Ma et al. proposed a multi-modal fine-grained feature fusion model for code summarization, effectively aligning

and fusing information from token and abstract syntax tree modalities. Outperforming current state-of-the-art

models, this approach demonstrated superior results.

Gong et al. presented SCRIPT, a structural relative position-guided transformer, using ASTs to capture source

code structural dependencies. SCRIPT outperformed existing models on benchmark datasets in terms of BLEU,

ROUGE-L, and METEOR metrics. Gao and Lyu proposed M2TS, an AST-based source code summarization

technique integrating AST and token features to capture the structure and semantics of source code,

demonstrating performance on Java and Python language datasets.

Ferretti and Saletta introduced a novel summarization approach using a pseudo-language to enhance the BRIO

model, outperforming CodeBERT and PLBART. The study explored the limitations of existing NLP-based

approaches and suggested further research directions.

Choi et al. presented READSUM, a model combining abstractive and extractive approaches for generating

concise and informative code summaries. READSUM considered both structural and temporal aspects of input

code, utilizing a multi-head self-attention mechanism to create augmented code representations. The extractive

procedure verified the relevancy of important keywords, while the abstractive approach generated high-quality

summaries considering both structural and temporal information from the source code.

In summary, code embeddings and transformers both play crucial roles in code summarization, yet they operate in

distinct ways. Code embeddings typically involve representing code snippets as fixed-length vectors in a

continuous vector space, capturing semantic and syntactic information. This approach offers simplicity and

efficiency in handling code representations but may struggle with capturing long-range dependencies. On the other

hand, transformers excel in modeling sequential data by processing the entire input sequence simultaneously

through self-attention mechanisms. This allows them to capture intricate dependencies across code snippets

effectively, resulting in more comprehensive summarizations. However, transformers often require larger

computational resources compared to code embeddings. Thus, while code embeddings offer efficiency and

simplicity, transformers provide a more powerful and context-aware solution for code summarization tasks.

2. Bug Detection and Correction

This task focuses on identifying errors in code (Figure 1), emphasizing the detection of unknown errors to enhance

software reliability. Traditional bug detection methods rely on manual code reviews, which are often tedious and

[5]

[6]

[7]

[8]

[9]

[10]

[11]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 3/20

time-consuming. In contrast, code embedding presents an efficient approach, capable of processing large volumes

of code and identifying potential bugs within minutes. The effectiveness of code embedding depends on a diverse

training dataset, as a lack of diversity may hinder its ability to capture all types of bugs.

Figure 1. Code bug detection and correction example.

Aladics et al. demonstrated that representing source code as vectors, based on an abstract syntax tree and the

Doc2Vec algorithm, improved bug prediction accuracy and was suitable for machine learning tasks involving

source code. Cheng et al. proposed a self-supervised contrastive learning approach for static vulnerability

detection, leveraging pre-trained path embedding models to reduce the need for labeled data. Their approach

outperformed eight baselines for bug detection in real-world projects.

Hegedus and Ferenc used a machine learning model to filter out false positive code analysis warnings from an

open-source Java dataset, achieving an accuracy of 91%, an F1-score of 81.3%, and an AUC of 95.3%. NLP

transformers offer an efficient and accurate method for bug detection by analyzing source code, identifying

patterns, and detecting inconsistencies indicative of bugs. Bagheri and Hegedus compared text representation

methods (word2vec, fastText, and BERT) for detecting vulnerabilities in Python code, with BERT exhibiting the

highest accuracy rate (93.8%). Gomes et al. found that BERT-based feature extraction significantly

outperformed TF-IDF-based extraction in predicting long-lived bugs, with support vector machines and random

forests producing better results when using BERT.

Code summarization, utilizing NLP transformers, presents an approach to bug detection by automatically

generating human-readable summaries of code fragments. This method has shown promise in detecting bugs in

open-source projects with ample code and bug data available for training.

Evaluation of four new CodeBERT models for predicting software defects demonstrated their ability to improve

predictive accuracy across different software versions and projects . The choice of distinct prediction

approaches influenced the accuracy of the CodeBERT models.

DistilBERT, a lightweight version of BERT, pre-trained and fine-tuned on various NLP tasks, including bug detection

and correction, offers faster and more efficient bug detection, albeit with potentially lower performance than other

transformer models. AttSum, a deep attention-based summarization model, surpassed existing models in

evaluating bug report titles .

[12]

[13]

[14]

[15]

[16]

[17]

[18]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 4/20

Bugsplainer, a transformer-based generative model for explaining software bugs to developers, presented more

precise, accurate, concise, and helpful explanations than previous models . Transformers contribute to bug

localization, identifying the exact location of bugs in the code. Validation of patches in automated program repair

(APR) remains a crucial area, with Csuvik et al. demonstrating the utility of Doc2Vec models in generating

patches for JavaScript code.

Mashhadi and Hemmati introduced an automated program repair approach relying on CodeBERT, generating

qualitative fixes in various bug cases. Chakraborty et al. created Modit, a multi-modal NMT code editing engine,

which outperformed existing models in obtaining correct code patches, especially when developer hints were

included.

Generate and validate, a strategy for automatic bug repair using the generative pre-trained transformer (GPT)

model, achieved up to 17.25% accuracy . SeqTrans, proposed by Chi et al. , demonstrated superior accuracy

in addressing certain types of vulnerabilities, outperforming previous strategies in the context of neural machine

translation (NMT) technology.

VRepair, an approach by Chen et al. , utilized deep learning and transfer learning techniques for automatic

software vulnerability repair, showing effectiveness in repairing security vulnerabilities in C. Kim and Yang , who

utilized the BERT algorithm to predict duplicated bug reports, outperforming existing models and improving bug

resolution times.

A technique for developing test oracles, combined with automated testing, improved accuracy by 33%, identifying

57 real-world bugs . da Silva et al. explored various program embeddings and learning models for predictive

compilation, with surprisingly simple embeddings performing comparably to more complex ones.

In summary, code embeddings and transformers serve as valuable tools for bug detection and correction, each

with its unique strengths. Code embeddings offer a concise representation of code snippets, capturing their

semantic and syntactic properties in a fixed-length vector format. This can facilitate efficient similarity comparisons

between code segments, aiding in identifying similar bug patterns across projects. However, code embeddings

may struggle with capturing complex contextual information and long-range dependencies, potentially leading to

limitations in detecting subtle bugs. In contrast, transformers excel in modeling sequential data through self-

attention mechanisms, enabling them to capture intricate patterns and contextual information across code

segments. This makes transformers particularly effective in detecting and correcting bugs that involve complex

interactions and dependencies between code components. Despite the promising results of NLP transformers in

bug detection, challenges include the scarcity of large, high-quality datasets and the significant computational

resources and training time required. Existing datasets are often language-specific, making generalization to

different codebases challenging. Additionally, the resource-intensive nature of NLP transformers may limit their

suitability for real-time bug detection.

3. Code Completion

[19]

[20]

[21]

[22]

[23] [24]

[25]

[26]

[27] [28]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 5/20

Code completion, a crucial aspect of programming, involves suggesting code to assist programmers in efficiently

completing the code they are currently typing. This suggestion can span variable and function names to entire code

snippets. The application of transformers in code completion harnesses advanced language models, trained on

extensive text data, to enhance developers’ coding efficiency. These models exhibit a deep understanding of the

context of the code under construction, predicting and suggesting the next code sequence as developers type. This

extends beyond basic keyword suggestions, encompassing variable names, function calls, and even the

generation of complete code snippets.

The model’s proficiency in comprehending syntactic and semantic structures in programming languages ensures

accurate and contextually relevant suggestions. It plays a role in identifying and preventing common coding

mistakes by offering real-time corrections. Moreover, code completion with transformers often entails providing

contextual information such as function signatures, parameter details, and relevant documentation. This not only

accelerates the coding process but also aids developers in effectively utilizing various functions and methods.

Roberta , another transformer model, has demonstrated impressive results in various natural language

processing tasks, showcasing noteworthy performance in code completion. It excels in generating code for diverse

programming languages, showcasing a robust understanding of code syntax and context.

Transformer-XL , designed to handle longer sequences compared to traditional transformers, has exhibited

promising outcomes in code completion tasks, especially when dealing with extensive and intricate sequences. It

showcases proficiency in generating code for various programming languages.

CodeFill, proposed by Izadi et al. , is a language model for autocompletion leveraging learned structure and

naming information. Outperforming several baseline and state-of-the-art models, including GPT-C and TravTrans+,

CodeFill excels in both single-token and multi-token prediction. All code and datasets associated with CodeFill are

publicly available.

CCMC, presented by Yang and Kuang , is a code completion model utilizing a Transformer-XL model for

handling long-range dependencies and a pointer network with CopyMask for copying OOV tokens from inputs. The

model demonstrates excellent performance in code completion on real-world datasets.

Developers can seamlessly integrate code completion into their preferred integrated development environments

(IDEs) or code editors, enhancing the overall coding experience. The interactive and adaptive nature of

transformer-based code completion renders it a powerful tool for developers working across various programming

languages and frameworks.

Liu et al. introduced a multi-task learning-based pre-trained language model with a transformer-based neural

architecture to address challenges in code completion within integrated development environments (IDEs).

Experimental results highlight the effectiveness of this approach compared to existing state-of-the-art methods.

[29]

[30]

[31]

[32]

[33]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 6/20

BART (bidirectional and auto-regressive transformer), another popular transformer model developed , is trained

using a combination of supervised and unsupervised learning techniques. Specifically designed for text generation

tasks, BART has shown promising results in code generation, achieving state-of-the-art performance in code

completion tasks where it predicts the remaining code based on the given context.

A novel neural architecture based on transformer models was proposed and evaluated for autocomplete systems in

IDEs, showcasing an accuracy increase of 14–18%. Additionally, an open-source code and data pipeline were

released . While transformer models exhibit promise for code completion, further enhancements in accuracy are

essential for addressing complex scenarios .

In summary, code embeddings and transformers are both valuable tools for code completion, each offering distinct

advantages. Code embeddings provide a compact representation of code snippets in a continuous vector space,

capturing their semantic and syntactic properties. This allows for efficient retrieval of similar code segments, aiding

in suggesting relevant completions based on the context of the code being written. However, code embeddings

may struggle with capturing long-range dependencies and contextual nuances, potentially leading to less accurate

suggestions in complex coding scenarios. Transformers, on the other hand, excel in modeling sequential data

through self-attention mechanisms, enabling them to capture intricate patterns and contextual information across

code sequences. This results in more accurate and context-aware code completions, especially in scenarios where

understanding broader context and dependencies is crucial.

4. Code Generation Process

Code generation involves the task of creating source code based on constraints specified by the programmer in

natural language. Hu et al. introduced a supervised code embedding approach along with a tree representation

of code snippets, demonstrating enhanced accuracy and efficiency in generating code from natural language

compared to current state-of-the-art methods.

Transformers, a type of neural network architecture widely used for various natural language processing (NLP)

tasks, including code generation, utilize an attention mechanism to capture long-term dependencies. They excel in

handling sequential data without relying on recurrent connections, making them well-suited for tasks involving code

generation.

Transformers can be applied to generate functions or methods based on high-level specifications. Developers can

articulate the desired functionality in natural language, and the transformer generates the corresponding code.

Svyatkovskiy et al. introduced IntelliCode Compose, a versatile, multilingual code completion tool capable of

predicting arbitrary code tokens and generating correctly structured code lines. It was trained on 1.2 billion lines of

code across four languages and utilized in the Visual Studio Code IDE and Azure Notebook.

[34]

[35]

[36]

[37]

[38]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 7/20

Gemmell et al. explored Transformer architectures for code generation beyond existing IDE capabilities,

proposing a “Relevance Transformer” model. Benchmarking results demonstrated improvement over the current

state-of-the-art.

Soliman et al. presented MarianCG-NL-to-Code, a code generation transformer model for generating Python

code from natural language descriptions. Outperforming state-of-the-art models, it was downloadable on GitHub

and evaluated on CoNaLa and DJANGO datasets.

ExploitedGen , an exploit code generation approach based on CodeBERT, achieved better accuracy in

generating exploit code than existing methods. It incorporated a template-augmented parser and a semantic

attention layer, with additional experiments assessing generated code for syntax and semantic accuracy.

Laskari et al. discussed Seq2Code, a transformer-based solution for translating natural language problem

statements into Python source code. Using an encoder–decoder transformer design with multi-head attention and

separate embeddings for special characters, the model demonstrated improved perplexity compared to similarly

structured models.

To summarize the code generation process, code embeddings and transformers offer distinctive approaches, each

with its own strengths. Code embeddings condense code snippets into fixed-length vectors, capturing semantic

and syntactic information efficiently. This simplifies the generation process by enabling quick retrieval of similar

code segments and facilitating straightforward manipulation in vector space. However, code embeddings might

struggle with capturing complex dependencies and contextual nuances, potentially limiting their ability to produce

diverse and contextually accurate code. In contrast, transformers excel in modeling sequential data through self-

attention mechanisms, allowing them to capture intricate patterns and long-range dependencies across code

sequences. This enables transformers to generate code with greater context awareness and flexibility, resulting in

more accurate and diverse outputs. Nevertheless, transformers typically demand significant computational

resources and extensive training data compared to code embeddings.

5. Code Translation

Code translation (Figure 2) involves the conversion of source code from one programming language to another,

commonly employed for managing legacy source code. Unlike code generation, which takes natural language as

input, code translation deals directly with source code. Bui et al. introduced a bilingual neural network (Bi-NN)

architecture for automatically classifying Java and C++ programs. Comprising two sub-networks dedicated to Java

and C++ source code, Bi-NN utilized an additional neural network layer to recognize similarities in algorithms and

data structures across different languages. Evaluation of a code corpus containing 50 diverse algorithms and data

structures revealed promising classification results, with increased accuracy attributed to encoding more semantic

information from the source code.

[39]

[40]

[41]

[42]

[43]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 8/20

Figure 2. Code translation example.

In contrast to traditional machine translation methods, transformers, which employ self-attention mechanisms

instead of recurrent networks, play a pivotal role in code translation. Transformers facilitate the automatic

conversion of source code written in one programming language into its equivalent in another language. This

capability proves valuable for tasks such as cross-language code migration, integrating code from different

languages, or aiding developers familiar with one language in comprehending and working with code written in

another.

Hassan et al. introduced a source code converter based on the neural machine translation transformer model,

specializing in converting source code between Java and Swift. The model was trained on a merged dataset, and

initial results demonstrated promise in terms of the pipeline and code synthesis procedure.

DeepPseudo, presented by Yang et al. , leveraged advancements in sequence-to-sequence learning and code

semantic learning to automatically generate pseudo-code from source code. Experiment results indicated

DeepPseudo’s superiority over seven state-of-the-art models, providing a valuable tool for novice developers to

understand programming code more easily.

Alokla et al. proposed a new model for generating pseudocode from source code, achieving higher accuracy

compared to previous models. This model utilized similarity measures and deep learning transformer models,

demonstrating promising results on two datasets.

DLBT, a deep learning-based transformer model for automatically generating pseudocode from source code ,

tokenized the source code and employed a transformer to assess the relatedness between the source code and its

corresponding pseudocode. Tested with Python source code, DLBT achieved accuracy and BLEU scores of 47.32

and 68.49, respectively.

Acharjee et al. suggested a method utilizing natural language processing and a sequence-to-sequence deep

learning-based model trained on the SPoC dataset for pseudocode conversion. This approach exhibited increased

accuracy and efficiency compared to other techniques, as evaluated using bilingual understudy scoring.

To sum up regarding the realm of code generation translation, both code embeddings and transformers offer

distinct advantages. Code embeddings condense code snippets into fixed-length vectors, effectively capturing the

[44]

[45]

[46]

[47]

[48]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 9/20

semantic and syntactic information essential for translation tasks. This approach simplifies the translation process

by enabling quick retrieval of similar code segments and facilitating straightforward manipulation in vector space.

However, code embeddings may struggle to capture complex dependencies and nuances present in code,

potentially limiting their ability to produce accurate translations. On the other hand, transformers excel in modeling

sequential data through self-attention mechanisms, allowing them to capture intricate patterns and long-range

dependencies across code sequences. This results in more context-aware translations, with the ability to handle a

wide range of coding languages and structures.

6. Code Comment Generation

The objective of this task is the automatic generation of natural language comments for a given code snippet.

Shahbazi et al. introduced API2Com, a comment generation model that utilized Application Programming

Interface Documentations (API Docs) as external knowledge resources. The authors observed that API Docs could

enhance comment generation, especially when there was only one API in the method. However, as the number of

APIs increased, the model output was negatively impacted.

ComFormer, proposed by Yang et al. , is a novel code comment generator that integrates transformer and fusion

method-based hybrid code presentation. Byte-BPE and Sim_SBT were employed to address out-of-vocabulary

(OOV) problems during training. The evaluation involved three metrics and a human study comparing ComFormer

to seven state-of-the-art baselines from both code comment and neural machine translation (NMT) domains.

Chakraborty et al. introduced a new pre-training objective for language models for source code, aiming to

naturalize the code by utilizing its bi-channel structure (formal and informal). The authors employed six categories

of semantic maintaining changes to construct unnatural forms of code for model training. After fine-tuning, the

model performed on par with CodeT5, exhibiting improved performance for zero-shot and few-shot learning, as

well as better comprehension of code features.

Geng et al. proposed a two-stage method for creating natural language comment texts for code. The approach

utilized a model interpretation strategy to refine summaries, enhancing accuracy. Thongtanunam et al.

developed AutoTransform, an advanced neural machine translation (NMT) model that significantly increased

accuracy in automatically transforming code for code review processes. This innovation aimed to reduce

developers’ time and effort in manual code review.

BASHEXPLAINER automated code comment generation for Bash scripts, outperforming existing methods

based on metrics such as BLEU-3/4, METEOR, and ROUGE-L by up to 9.29%, 8.75%, 4.77%, and 3.86%,

respectively. Additionally, it offered a browser plug-in to facilitate the understanding of Bash code.

S-Coach, presented by Lin et al. , is a two-phase approach to updating software comments. The first phase

utilizes a predictive model to determine if comment updates are code-indicative. If affirmative, an off-the-shelf

[49]

[50]

[51]

[52]

[53]

[54]

[55]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 10/20

heuristic-based approach is employed; otherwise, a specially-designed deep learning model is leveraged. Results

demonstrated that this approach is more effective than the current state-of-the-art by 20%.

In the domain of code comment generation, both code embeddings and transformers play vital roles, each offering

distinct advantages. Code embeddings provide a concise representation of code snippets in a continuous vector

space, capturing their semantic and syntactic properties. This facilitates the generation of comments by enabling

efficient retrieval of similar code segments and assisting in understanding the context for comment generation.

However, code embeddings may struggle with capturing the intricacies and nuances of code, potentially leading to

less contextually relevant comments. Transformers, on the other hand, excel in modeling sequential data through

self-attention mechanisms, allowing them to capture complex patterns and dependencies across code sequences.

This results in more context-aware and informative comments that better align with the underlying code logic.

7. Duplicate Code Detection and Similarity

This task involves identifying duplicate code snippets, whether within the same codebase or across different

codebases. Transformers play a crucial role in duplicate code detection, automating the identification of redundant

or duplicated code segments within a software project. This process is vital for maintaining code quality, enhancing

maintainability, and preventing potential issues associated with code redundancy.

Karakatic et al. introduced a novel method for comparing software systems by computing the robust Hausdorff

distance between semantic source code embeddings of each program component. The authors utilized a pre-

trained neural network model, code2vec, to generate source code vector representations from various open-source

libraries. Employing different types of robust Hausdorff distance, the proposed method demonstrated its suitability

for gauging semantic similarity.

The presence of code smells and security smells in various training datasets, a fine-tuned transformer-based GPT-

Neo model, and a closed-source code generation tool raised concerns about the cautious application of language

models to code generation tasks .

Yu et al. proposed BEDetector, a two-channel feature extraction method for binary similarity detection,

encompassing contextual semantic feature extraction and a neural GAE model. This system achieved impressive

detection rates, including 88.8%, 86.7%, and 100% for resilience against CVE vulnerabilities ssl3-get-key-

exchange, ssl3-get-new-session-ticket, and udhcp-get-option, respectively.

Mateless et al. developed Pkg2Vec to encode software packages and predict their authors with remarkable

accuracy. Comparisons against state-of-the-art algorithms on the ISOT datasets revealed Pkg2Vec’s superior

performance, showcasing a 13% increase in accuracy. This demonstrated the efficacy of applying deep learning to

improve authorship attribution of software packages, providing deep, interpretable features indicating the unique

style and intentions of the programmer.

[56]

[57]

[58]

[59]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 11/20

CodeBERT showed effectiveness for Type-1 and Type-4 clone detection, although its performance declined for

unseen functionalities. Fine-tuning was identified as a potential avenue to marginally improve recall . Kovacevic

et al. investigated the effectiveness of both ML-based and heuristics-based code smell detection models,

utilizing different source code representations (metrics and code embeddings) on the large-scale MLCQ dataset.

Transfer learning models were evaluated to analyze the impact of mined knowledge on code smell detection.

An efficient transformer-based code clone detection method was proposed by , promising accurate and rapid

identification of code clones while significantly reducing computational cost.

To sum up, in the realm of duplicate code detection and similarity analysis, both code embeddings and

transformers offer unique advantages. Code embeddings distill code snippets into fixed-length vectors, effectively

capturing their semantic and syntactic features. This enables efficient comparison and retrieval of similar code

segments, facilitating the identification of duplicate code instances. However, code embeddings may struggle to

capture complex dependencies and contextual nuances, potentially limiting their effectiveness in detecting subtle

similarities. Transformers, on the other hand, excel in modeling sequential data through self-attention mechanisms,

allowing them to capture intricate patterns and long-range dependencies across code sequences. This results in

more accurate and context-aware similarity analysis, enabling the detection of subtle variations and similarities

within code snippets. Nonetheless, transformers typically require larger computational resources and extensive

training data compared to code embeddings.

8. Code Refinement

Code refinement (Figure 3) involves identifying and correcting pieces of code susceptible to bugs or vulnerabilities.

In the work of Liu et al. , a software maintenance method was introduced for debugging method names by

evaluating the consistency between their names and code to identify discrepancies. Through experiments on over

2.1 million Java methods, the method achieved an F1-measure of 67.9%, surpassing existing techniques by 15%.

Notably, the authors successfully fixed 66 inconsistent method names in a live study on projects in the wild.

Figure 3. Code refinement example.

[60]

[61]

[62]

[63]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 12/20

Cabrera Lozoya et al. extended a state-of-the-art approach for representing source code to also include

changes in the source code (commits). Transfer learning was then applied to classify security-relevant commits.

The study demonstrated that representations based on structural information of the code syntax outperformed

token-based representations. Moreover, pre-training with a small dataset (greater than 10^4 samples) for a closely

related pretext task showed superior performance compared to pre-training with a larger dataset (more than 10

samples) and a loosely related pretext task.

Wang et al. introduced Cognac, a context-guidance method name recommender that incorporated global

context from methods related by calls. It utilized prior knowledge to adjust method name recommendations and

method name consistency checking tasks. Cognac outperformed existing approaches on four datasets with F-

scores of 63.2%, 60.8%, 66.3%, and 68.5%, respectively, achieving an overall accuracy of 76.6%, surpassing

MNire by 11.2%, a machine learning approach to check the consistency between the name of a given method and

its implementation .

Xie et al. proposed DeepLink, a model applying code knowledge graph embeddings and deep learning to

identify links between issue reports and code commits for software projects. Evaluation of real-world projects

demonstrated its superiority over current state-of-the-art solutions.

Borovits et al. presented an automated procedure using word embeddings and deep learning processes to

detect inconsistencies between infrastructure as code (IaC) code units and their names. Experiments on an open-

source dataset showed an accuracy range of 78.5% to 91.5% in finding such inconsistencies.

Ma et al. introduced Graph-code2vec, a novel self-supervised pre-training approach using code investigation

and graph neural networks to generate agnostic task embeddings for software engineering tasks. The proposed

technique proved more effective than existing generic and task-specific learning-based baselines, including

GraphCodeBERT.

NaturalCC is an open-source code intelligence toolkit, accessible on the website (http://xcodemind.github.io),

built on Fairseq and PyTorch technology. It is designed to enable efficient machine learning-based implementation

of code intelligence tasks such as code summarization, code retrieval, and code completion.

In the context of code refinement, both code embeddings and transformers offer distinct advantages. Code

embeddings condense code snippets into fixed-length vectors, capturing their semantic and syntactic properties

efficiently. This facilitates the refinement process by enabling quick retrieval of similar code segments and aiding in

identifying areas for improvement. However, code embeddings may struggle to capture complex dependencies and

nuanced coding patterns, potentially limiting their ability to suggest refined solutions accurately. Conversely,

transformers excel in modeling sequential data through self-attention mechanisms, enabling them to capture

intricate patterns and dependencies across code sequences. This results in more contextually aware refinements,

with the ability to suggest solutions that align closely with the underlying logic of the code.

[64]

6

[65]

[66]

[67]

[68]

[69]

[70]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 13/20

9. Code Security

Code security involves checking source code for exploits that may allow unauthorized access to restricted

resources. Zaharia et al. proposed the use of an intermediate representation that strikes a balance between

stringency to retain security flaws, as per MITRE standards, and dynamism that does not strictly rely on the lexicon

of a programming language. This intermediate representation is based on the semantical clusterization of

commands in C/C++ programs through word embeddings. These embeddings are distributed through the formed

intermediate representation to different classifiers for recognizing security vulnerability patterns.

In related work, Zaharia et al. developed a security scanning system employing machine learning algorithms to

detect various patterns of vulnerabilities listed in the Common Weaknesses Enumeration (CWE) from NIST. This

system, independent of the programming language, achieved a recall value exceeding 0.94, providing a robust

defense against cyber-attacks.

Barr et al. conducted an in-depth analysis of the Fluoride Bluetooth module’s source code using deep learning,

machine learning, heuristics, and combinatorial optimization techniques. They employed byte-pair encoding to

lower dimensionality, embedded tokens into a low-dimensional Euclidean space using LSTM, and created a

distance matrix based on cosines between vectors of functions. The authors used cluster-editing to segment the

graph’s vertices into nearly complete subgraphs, assessing vulnerability risk based on vectors and features of each

component.

Saletta and Ferretti discussed a technique using natural language processing to recognize security

weaknesses in source code. This involved mapping code to vector space through its abstract syntax trees, and

supervised learning to capture distinguishing features among different vulnerabilities. Results demonstrated the

model’s ability to accurately recognize various types of security weaknesses.

In the domain of code security, both code embeddings and transformers serve as valuable tools, each with its

unique strengths. Code embeddings offer a compact representation of code snippets, capturing their semantic and

syntactic properties efficiently. This allows for quick analysis of code similarities, aiding in the identification of

potential security vulnerabilities based on patterns observed in known security issues. However, code embeddings

may struggle to capture complex interactions and subtle security flaws, potentially leading to limitations in detecting

sophisticated attacks. Transformers, on the other hand, excel in modeling sequential data and understanding

contextual information through self-attention mechanisms. This enables them to capture intricate patterns and

dependencies across code sequences, resulting in a more comprehensive and context-aware analysis of code

security. However, transformers typically require larger computational resources and extensive training data

compared to code embeddings.

References

[71]

[72]

[73]

[74]

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 14/20

1. Sui, Y.; Cheng, X.; Zhang, G.; Wang, H. Flow2Vec: Value-flow-based precise code embedding.
Proc. ACM Program. Lang. 2020, 4, 233.

2. Wang, R.; Zhang, H.; Lu, G.; Lyu, L.; Lyu, C. Fret: Functional Reinforced Transformer with BERT
for Code Summarization. IEEE Access 2020, 8, 135591–135604.

3. Yang, Z.; Keung, J.; Yu, X.; Gu, X.; Wei, Z.; Ma, X.; Zhang, M. A Multi-Modal Transformer-based
Code Summarization Approach for Smart Contracts. In Proceedings of the 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC), Madrid, Spain, 20–21 May 2021.

4. Hou, S.; Chen, L.; Ye, Y. Summarizing Source Code from Structure and Context. In Proceedings
of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July
2022.

5. Wang, Y.; Dong, Y.; Lu, X.; Zhou, A. GypSum: Learning hybrid representations for code
summarization. In Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, Online, 16–17 May 2022.

6. Gu, J.; Salza, P.; Gall, H.C. Assemble Foundation Models for Automatic Code Summarization. In
Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022.

7. Ma, Z.; Gao, Y.; Lyu, L.; Lyu, C. MMF3: Neural Code Summarization Based on Multi-Modal Fine-
Grained Feature Fusion. In Proceedings of the 16th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, Helsinki, Finland, 29–23 September 2022.

8. Gong, Z.; Gao, C.; Wang, Y.; Gu, W.; Peng, Y.; Xu, Z. Source Code Summarization with Structural
Relative Position Guided Transformer. In Proceedings of the 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 15–18 March
2022.

9. Gao, Y.; Lyu, C. M2TS: Multi-scale multi-modal approach based on transformer for source code
summarization. In Proceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, Online, 16–17 May 2022.

10. Ferretti, C.; Saletta, M. Naturalness in Source Code Summarization. How Significant is it? In
Proceedings of the 2023 IEEE/ACM 31st International Conference on Program Comprehension
(ICPC), Melbourne, VI, Australia, 15–16 May 2023.

11. Choi, Y.; Na, C.; Kim, H.; Lee, J.-H. READSUM: Retrieval-Augmented Adaptive Transformer for
Source Code Summarization. IEEE Access 2023, 11, 51155–51165.

12. Aladics, T.; Jasz, J.; Ferenc, R. Bug Prediction Using Source Code Embedding Based on
Doc2Vec. In Computational Science and Its Applications; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2021; pp. 382–397.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 15/20

13. Cheng, X.; Zhang, G.; Wang, H.; Sui, Y. Path-sensitive code embedding via contrastive learning
for software vulnerability detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Online, Republic of Korea, 18–22 July 2022.

14. Hegedus, P.; Ferenc, R. Static Code Analysis Alarms Filtering Reloaded: A New Real-World
Dataset and its ML-Based Utilization. IEEE Access 2022, 10, 55090–55101.

15. Bagheri, A.; Hegedus, P. A Comparison of Different Source Code Representation Methods for
Vulnerability Prediction in Python. In Quality of Information and Communications Technology;
Springer: Cham, Switzerland, 2021; pp. 267–281.

16. Gomes, L.; da Silva Torres, R.; Cortes, M.L. BERT- and TF-IDF-based feature extraction for long-
lived bug prediction in FLOSS: A comparative study. Inf. Softw. Technol. 2023, 160, 107217.

17. Pan, C.; Lu, M.; Xu, B. An Empirical Study on Software Defect Prediction Using CodeBERT
Model. Appl. Sci. 2021, 11, 4793.

18. Ma, X.; Keung, J.W.; Yu, X.; Zou, H.; Zhang, J.; Li, Y. AttSum: A Deep Attention-Based
Summarization Model for Bug Report Title Generation. IEEE Trans. Reliab. 2023, 72, 1663–1677.

19. Mahbub, P.; Shuvo, O.; Rahman, M.M. Explaining Software Bugs Leveraging Code Structures in
Neural Machine Translation. In Proceedings of the 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), Melbourne, VI, Australia, 14–20 May 2023.

20. Csuvik, V.; Horvath, D.; Lajko, M.; Vidacs, L. Exploring Plausible Patches Using Source Code
Embeddings in JavaScript. In Proceedings of the 2021 IEEE/ACM International Workshop on
Automated Program Repair (APR), Madrid, Spain, 1 June 2021.

21. Mashhadi, E.; Hemmati, H. Applying CodeBERT for Automated Program Repair of Java Simple
Bugs. In Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), Madrid, Spain, 17–19 May 2021.

22. Chakraborty, S.; Ray, B. On Multi-Modal Learning of Editing Source Code. In Proceedings of the
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, VI, Australia, 15–19 November 2021.

23. Lajko, M.; Csuvik, V.; Vidacs, L. Towards JavaScript program repair with generative pre-trained
transformer (GPT-2). In Proceedings of the Third International Workshop on Automated Program
Repair, Pittsburgh, PA, USA, 19 May 2022.

24. Chi, J.; Qu, Y.; Liu, T.; Zheng, Q.; Yin, H. SeqTrans: Automatic Vulnerability Fix Via Sequence to
Sequence Learning. IEEE Trans. Softw. Eng. 2023, 49, 564–585.

25. Chen, Z.; Kommrusch, S.; Monperrus, M. Neural Transfer Learning for Repairing Security
Vulnerabilities in C Code. IEEE Trans. Softw. Eng. 2023, 49, 147–165.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 16/20

26. Kim, T.; Yang, G. Predicting Duplicate in Bug Report Using Topic-Based Duplicate Learning with
Fine Tuning-Based BERT Algorithm. IEEE Access 2022, 10, 129666–129675.

27. Dinella, E.; Ryan, G.; Mytkowicz, T.; Lahiri, S.K. TOGA: A neural method for test oracle
generation. In Proceedings of the 44th International Conference on Software Engineering,
Pittsburgh, PA, USA, 21–29 May 2022.

28. da Silva, A.F.; Borin, E.; Pereira, F.M.Q.; Queiroz, N.L.; Napoli, O.O. Program representations for
predictive compilation: State of affairs in the early 20’s. J. Comput. Lang. 2022, 73, 101171.

29. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.;
Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019,
arXiv:1907.11692.

30. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-XL: Attentive
language models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 2978–2988.

31. Izadi, M.; Gismondi, R.; Gousios, G. CodeFill: Multi-token code completion by jointly learning from
structure and naming sequences. In Proceedings of the 44th International Conference on
Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022.

32. Yang, H.; Kuang, L. CCMC: Code Completion with a Memory Mechanism and a Copy
Mechanism. In Proceedings of the EASE 2021: Evaluation and Assessment in Software
Engineering, Trondheim, Norway, 21–23 June 2021.

33. Liu, F.; Li, G.; Zhao, Y.; Jin, Z. Multi-task learning based pre-trained language model for code
completion. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, Virtual Event Australia, 21–25 December 2020.

34. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.;
Zettlemoyer, L. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880.

35. Kim, S.; Zhao, J.; Tian, Y.; Chandra, S. Code Prediction by Feeding Trees to Transformers. In
Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), Madrid, Spania, 22–30 May 2021.

36. Ciniselli, M.; Cooper, N.; Pascarella, L.; Mastropaolo, A.; Aghajani, E.; Poshyvanyk, D.; Di Penta,
M.; Bavota, G. An Empirical Study on the Usage of Transformer Models for Code Completion.
IEEE Trans. Softw. Eng. 2021, 48, 4818–4837.

37. Hu, H.; Chen, Q.; Liu, Z. Code Generation from Supervised Code Embeddings. In Neural
Information Processing; Springer: Cham, Switzerland, 2019; pp. 388–396.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 17/20

38. Svyatkovskiy, A.; Deng, S.K.; Fu, S.; Sundaresan, N. IntelliCode compose: Code generation using
transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Online, 8–13
November 2020.

39. Gemmell, C.; Rossetto, F.; Dalton, J. Relevance Transformer: Generating Concise Code Snippets
with Relevance Feedback. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, Virtual Event China, 25–30 July 2020.

40. Soliman, A.S.; Hadhoud, M.M.; Shaheen, S.I. MarianCG: A code generation transformer model
inspired by machine translation. J. Eng. Appl. Sci. 2022, 69, 104.

41. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented
exploit code generation based on CodeBERT. J. Syst. Softw. 2023, 197, 111577.

42. Laskari, N.K.; Reddy, K.A.N.; Indrasena Reddy, M. Seq2Code: Transformer-Based Encoder-
Decoder Model for Python Source Code Generation. In Third Congress on Intelligent Systems;
Lecture Notes in Networks and Systems; Springer: Singapore, 2023; pp. 301–309.

43. Bui, N.D.Q.; Yu, Y.; Jiang, L. Bilateral Dependency Neural Networks for Cross-Language
Algorithm Classification. In Proceedings of the 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Hangzhou, China, 24–27 February
2019.

44. Hassan, M.H.; Mahmoud, O.A.; Mohammed, O.I.; Baraka, A.Y.; Mahmoud, A.T.; Yousef, A.H.
Neural Machine Based Mobile Applications Code Translation. In Proceedings of the 2020 2nd
Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26
October 2020.

45. Yang, G.; Zhou, Y.; Chen, X.; Yu, C. Fine-grained Pseudo-code Generation Method via Code
Feature Extraction and Transformer. In Proceedings of the 2021 28th Asia-Pacific Software
Engineering Conference (APSEC), Taipei, Taiwan, 6–9 December 2021.

46. Alokla, A.; Gad, W.; Nazih, W.; Aref, M.; Salem, A.-B. Retrieval-Based Transformer Pseudocode
Generation. Mathematics 2022, 10, 604.

47. Gad, W.; Alokla, A.; Nazih, W.; Aref, M.; Salem, A. DLBT: Deep Learning-Based Transformer to
Generate Pseudo-Code from Source Code. Comput. Mater. Contin. 2022, 70, 3117–3132.

48. Acharjee, U.K.; Arefin, M.; Hossen, K.M.; Uddin, M.N.; Uddin, M.A.; Islam, L. Sequence-to-
Sequence Learning-Based Conversion of Pseudo-Code to Source Code Using Neural Translation
Approach. IEEE Access 2022, 10, 26730–26742.

49. Shahbazi, R.; Sharma, R.; Fard, F.H. API2Com: On the Improvement of Automatically Generated
Code Comments Using API Documentations. In Proceedings of the 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC), Madrid, Spain, 20–21 May 2021.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 18/20

50. Yang, G.; Chen, X.; Cao, J.; Xu, S.; Cui, Z.; Yu, C.; Liu, K. ComFormer: Code Comment
Generation via Transformer and Fusion Method-based Hybrid Code Representation. In
Proceedings of the 2021 8th International Conference on Dependable Systems and Their
Applications (DSA), Yinchuan, China, 5–6 August 2021.

51. Chakraborty, S.; Ahmed, T.; Ding, Y.; Devanbu, P.T.; Ray, B. NatGen: Generative pre-training by
“naturalizing” source code. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Singapore, 14–18
November 2022.

52. Geng, M.; Wang, S.; Dong, D.; Wang, H.; Cao, S.; Zhang, K.; Jin, Z. Interpretation-based Code
Summarization. In Proceedings of the 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC), Melbourne, VI, Australia, 15–16 May 2023.

53. Thongtanunam, P.; Pornprasit, C.; Tantithamthavorn, C. AutoTransform: Automated code
transformation to support modern code review process. In Proceedings of the 44th International
Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022.

54. Yu, C.; Yang, G.; Chen, X.; Liu, K.; Zhou, Y. BashExplainer: Retrieval-Augmented Bash Code
Comment Generation based on Fine-tuned CodeBERT. In Proceeding of the 2022 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Limassol, Cyprus, 3–
7 October 2022.

55. Lin, B.; Wang, S.; Liu, Z.; Xia, X.; Mao, X. Predictive Comment Updating with Heuristics and AST-
Path-Based Neural Learning: A Two-Phase Approach. IEEE Trans. Softw. Eng. 2023, 49, 1640–
1660.

56. Karakatic, S.; MiloÅ¡evic, A.; Hericko, T. Software system comparison with semantic source code
embeddings. Empir. Softw. Eng. 2022, 27, 70.

57. Siddiq, M.L.; Majumder, S.H.; Mim, M.R.; Jajodia, S.; Santos, J.C.S. An Empirical Study of Code
Smells in Transformer-based Code Generation Techniques. In Proceedings of the 2022 IEEE
22nd International Working Conference on Source Code Analysis and Manipulation (SCAM),
Limassol, Cyprus, 3 October 2022.

58. Yu, L.; Lu, Y.; Shen, Y.; Huang, H.; Zhu, K. BEDetector: A Two-Channel Encoding Method to
Detect Vulnerabilities Based on Binary Similarity. IEEE Access 2021, 9, 51631–51645.

59. Mateless, R.; Tsur, O.; Moskovitch, R. Pkg2Vec: Hierarchical package embedding for code
authorship attribution. Future Gener. Comput. Syst. 2021, 116, 49–60.

60. Arshad, S.; Abid, S.; Shamail, S. CodeBERT for Code Clone Detection: A Replication Study. In
Proceedings of the 2022 IEEE 16th International Workshop on Software Clones (IWSC),
Limassol, Cyprus, 2 October 2022.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 19/20

61. Kovacevic, A.; Slivka, J.; Vidakovic, D.; Grujic, K.-G.; Luburic, N.; Prokic, S.; Sladic, G. Automatic
detection of Long Method and God Class code smells through neural source code embeddings.
Expert Syst. Appl. 2022, 204, 117607.

62. Zhang, A.; Fang, L.; Ge, C.; Li, P.; Liu, Z. Efficient transformer with code token learner for code
clone detection. J. Syst. Softw. 2023, 197, 111557.

63. Liu, K.; Kim, D.; Bissyande, T.F.; Kim, T.; Kim, K.; Koyuncu, A.; Kim, S.; Le Traon, Y. Learning to
Spot and Refactor Inconsistent Method Names. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May
2019.

64. Cabrera Lozoya, R.; Baumann, A.; Sabetta, A.; Bezzi, M. Commit2Vec: Learning Distributed
Representations of Code Changes. SN Comput. Sci. 2021, 2, 150.

65. Wang, S.; Wen, M.; Lin, B.; Mao, X. Lightweight global and local contexts guided method name
recommendation with prior knowledge. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, 23–28 August 2021.

66. Nguyen, S.; Phan, H.; Le, T.; Nguyen, T.N. Suggesting natural method names to check name
consistencies. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE ‘20). Association for Computing Machinery, New York, NY, USA; 2020; pp.
1372–1384.

67. Xie, R.; Chen, L.; Ye, W.; Li, Z.; Hu, T.; Du, D.; Zhang, S. DeepLink: A Code Knowledge Graph
Based Deep Learning Approach for Issue-Commit Link Recovery. In Proceedings of the 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Hangzhou, China, 24–27 February 2019.

68. Borovits, N.; Kumara, I.; Krishnan, P.; Palma, S.D.; Di Nucci, D.; Palomba, F.; Tamburri, D.A.; van
den Heuvel, W.-J. DeepIaC: Deep learning-based linguistic anti-pattern detection in IaC. In
Proceedings of the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques
for Software-Quality Evaluation, Virtual, USA, 13 November 2020.

69. Ma, W.; Zhao, M.; Soremekun, E.; Hu, Q.; Zhang, J.M.; Papadakis, M.; Cordy, M.; Xie, X.; Traon,
Y.L. GraphCode2Vec: Generic code embedding via lexical and program dependence analysis. In
Proceedings of the 19th International Conference on Mining Software Repositories, Pittsburg, PA,
USA, 23–24 May 2022.

70. Wan, Y.; He, Y.; Bi, Z.; Zhang, J.; Sui, Y.; Zhang, H.; Hashimoto, K.; Jin, H.; Xu, G.; Xiong, C.; et
al. NaturalCC: An Open-Source Toolkit for Code Intelligence. In Proceedings of the 2022
IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), Pittsburgh, PA, USA, 22–24 May 2022.

AI-Supported Programming Tasks | Encyclopedia.pub

https://encyclopedia.pub/entry/55142 20/20

71. Zaharia, S.; Rebedea, T.; Trausan-Matu, S. CWE Pattern Identification using Semantical
Clustering of Programming Language Keywords. In Proceedings of the 2021 23rd International
Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 26–28
May 2021.

72. Zaharia, S.; Rebedea, T.; Trausan-Matu, S. Machine Learning-Based Security Pattern
Recognition Techniques for Code Developers. Appl. Sci. 2022, 12, 12463.

73. Barr, J.R.; Shaw, P.; Abu-Khzam, F.N.; Thatcher, T.; Yu, S. Vulnerability Rating of Source Code
with Token Embedding and Combinatorial Algorithms. Int. J. Semant. Comput. 2020, 14, 501–
516.

74. Saletta, M.; Ferretti, C. A Neural Embedding for Source Code: Security Analysis and CWE Lists.
In Proceedings of the 2020 IEEE International Conference on Dependable, Autonomic and
Secure Computing, International Conference on Pervasive Intelligence and Computing,
International Conference on Cloud and Big Data Computing, International Conference on Cyber
Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB,
Canada, 17–22 August 2020.

Retrieved from https://encyclopedia.pub/entry/history/show/124343

