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Wireless sensor networks (WSNs) have taken a giant leap in scale, expanding their applicability to a large variety of

technological domains and applications, ranging from the Internet of things (IoT) for smart cities and smart homes to

wearable technology healthcare applications, underwater, agricultural and environmental monitoring and many more. This

expansion is rapidly growing every passing day in terms of the variety, heterogeneity and the number of devices which

such applications support. Data collection is commonly the core application in WSN and IoT networks, which are typically

composed of a large variety of devices, some constrained by their resources (e.g., processing, storage, energy) and some

by highly diverse demands. Many challenges span all the conceptual communication layers, from the Physical to the

Applicational. In addition, the integrated unit architecture and the platform design can be subject to various stringent

constraints. For example, size requirements can impose a strict constraint on the device design; low power consumption,

low production cost, and self-operation can represent additional constraints.   Accordingly, the device architecture is

fundamental and affects many other factors in the system. For example, power supply affects the life span; it also affects

transmission range, memory, and processing unit, which in turn can affect the algorithms that can be executed on the

device, etc.
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1. Introduction

Wireless sensor networks (WSN) are data measurement and gathering networks based on small hardware (HW) units

capable of sensing, monitoring, or measuring their surroundings. The sensed data are transmitted directly or by relay via

other sensors to some sink or server or a base station. The ultimate objective of such a configuration is to provide control

or exploration capabilities over an area where the network is deployed. WSN characteristics can vary substantially: they

can be composed of a few to hundreds of thousands of sensors; the monitored terrain can range from a small coverage

area (e.g., the human body) to a vast realm (e.g., a forest area for fire detection); the sensed variables of interest of the

surroundings are diverse (e.g., weather or health parameters, acceleration, pollution); and the sensors can have different

characteristics (e.g., size, computational power, energy source).

The Internet of things (IoT) aims to improve day-to-day life. The concept includes smart cities, smart homes, pervasive

health care, assisted living, environmental monitoring, surveillance, and so on. The IoT paradigm relies on interconnecting

a large number of devices (things) linked by the Internet via heterogeneous access networks through which they can

exchange information with one or more Internet gateways that can process the data, take action, and forward them to

another destination if needed. Since many IoT devices are expected to be wireless, and since sensing is one of the main

tasks and tools utilized by the IoT paradigm, IoT systems will rely extensively on WSN technology. The scale of scenarios

where WSN are deployed nowadays is vast. Traditionally, WSN were classified based on their placement (e.g., terrestrial,

underground, multimedia) . Since WSNs are closely associated with IoT, contemporary classification tends to re-

attribute the notions of the WSN domain to the IoT domain  and classify them based on their primary objectives, such as

smart cities , healthcare , retail and leisure , utilities (e.g., smart home energy control, water metering and leak

detection, and other general infrastructure monitoring networks) , agriculture and environmental safety (e.g., smart

farming and harvesting, pest control , seismology monitoring , oceanology ), and more.

As previously explained, one of the main tasks of both WSN and IoT systems is data collection and dissemination.

Reports are collected from the devices, and updates and operational assignments are distributed. Maintenance and

functional assessments are also collected and disseminated. Data collection and dissemination in very dense networks

such as WSNs and IoT networks which span heterogeneous devices, a significant percentage of which are expected to

be small, with very constrained processing, storage, and energy resources and with minimal network capabilities, is

challenging and draws significant attention both by the industrial and academic communities. Some of these challenges

include: (i) Information management — the amount of information collected or needing to be disseminated to the relevant
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entities is enormous, and some is expected to be redundant, both in terms of the information sent by each device, which

can be compressed, and in terms of same information received by different entities. Accordingly, innovative techniques

are required for data compression to reduce transmitted data over wireless channels and aggregation techniques that

exploit the redundancy between information sent by the different entities. (ii) Data analysis and reaction — the expected

vast data exchange and the low latency requirement (at least for some of the information collected) require processing

and analysis of data in real-time or near real-time, to enable timely decision making and instantaneous action-taking.

The ability to successfully transmit and gather vast streams of data incoming from an enormous number of devices and

sensors and finally to successfully analyze them, in order to automatically control a much larger scope of everyday life

systems, directly couples the process of data gathering with Big Data related challenges (e.g., ). Furthermore,

leveraging Cloud Computing platforms offers significant advances in data analytical abilities (e.g., ). It provides

new horizons to further develop and increase the size of WSN/IoT networks both in the sense of the number of sensing

units and in the sense of the amount of the acquired data (e.g., ). (iii) Connectivity — collecting and disseminating

data from and to many devices, potentially through vast, dense, heterogeneous networks, will be one of the biggest

challenges of the future of IoT; accordingly, novel MAC protocols and coding schemes should be devised to comply with

this challenge. With this respect, air time utilization and energy efficiency are of primary importance for the MAC layer

protocol design. Any MAC layer protocol should ensure that devices utilize the wireless channel frugally and with minimum

energy consumption. (iv) Security and Privacy — Connecting enormous numbers of devices to the Internet exposes the

IoT network to serious security vulnerabilities. All the more so since the relevant entities are limited. Accordingly, issues

such as authenticity, data encryption, and vulnerability to attacks (e.g., device impersonation) are critical for the IoT

paradigm’s continuous growth (e.g., ). In addition, since the information transmitted over the WSN and IoT networks

can be highly confidential (e.g., health reports, device tracking), the collection and dissemination of this information create

significant challenges related to data protection and privacy.

2. Application-Oriented

Many sensor platforms are application-oriented. Occasionally, their suggested architecture can be applied to other

applications; however, their design and evaluation are typically aimed at a specific one. Hence, in many cases, both

hardware and software technological developments are introduced for effective functioning. One of the most common

tasks of WSN is the obvious one of monitoring a terrain. There are many variants of WSN monitoring. For example, the

requirement can be to monitor every point in the Field of Interest (FoI) vs. monitoring a limited number of specific locations

or targets (aka target coverage) vs. just monitoring a border of a region to detect intruders (aka barrier coverage). The

coverage problem typically involves selecting a subset of sensors that fulfill the monitoring objective while maintaining

network connectivity. The sensors’ capabilities and the monitoring objective determine the network topology.

Biswas et al.  focus on energy-efficient data gathering in target coverage problem, in which an n sensor WSN needs to

monitor T specific targets, and there exists a route (multi-hop) from each source to the sink. The paper assumes that the

source nodes that sense the targets and initiate data packets into the network are known, and deals with the forwarding of

these packets to the sink. The paper proposes a distributed data gathering algorithm in which after each node discovers

its neighbors and their hop-count to the sink, it will forward data packets (when required) to its neighbor with maximum

remaining energy and a lower hop count to the sink (the remaining energy is assumed to be known). Ammari  focuses

on the k-coverage problem in which each point in the FoI is required to be covered by at least k sensors at any time, and

each active sensor participating in the monitoring task is required to be connected to the sink (possibly via a multi-hop

route). The paper assumes that the sensors are heterogeneous (they do not have the same characteristics) and mobile,

hence the sensors can move toward any region of interest in the deployment field to participate in any deficient k-
coverage area and can also act as mobile proxy sinks that collect sensed data from the sensors and deliver them to the

sink. Ammari  partitions the problem into two problems which are solved sequentially. Namely, the mobile k-coverage
problem, which selects a minimum subset of active sensors that solve the k-coverage problem and the data gathering
problem, and devise a forwarding scheme from the active sensors to the sink such that the energy consumption due to

sensor mobility and communication is minimized.

Mdemaya and Bomgni  utilize mobile sensors to achieve area coverage. These mobile sensors can be moved and

relocated to cover holes after the random deployment. Researchers suggest a two-phase approach. According to the first

one, the monitoring area after the initial random deployment is identified (by the BS), and mobile nodes are relocated to

cover the monitoring holes detected after the initial deployment, trying to ensure full coverage of the AoI by the static and

relocated sensors. At the second stage, the proposed algorithm schedules the sensors’ activity (awakening and

transmission times) that minimizes the energy consumption of the nodes while collecting and sending data to the base

station. To this end, the paper distinguishes between “normal” nodes and cluster heads.
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Occasionally, WSN architectures and designs are more application-oriented. For example, Cerchecci et al.  propose a

sensor node topology that uses low-cost and low-power components for energy-efficient waste management in the

context of smart cities. The architecture described in  suggests a node architecture for measuring the filling level of

trash bins and utilizes LoRa LPWAN (low-power wide-area network) technology for real-time data transmission to collect

the measured data in a remote data collection center. The design of a sensor node that can detect the presence of water

on home floors and provide early warning of water leaks is suggested by Teixidó et al. . The paper presents and

deploys both hardware and software of the network components (flood sensing nodes, actuator nodes, and a control

central); communication within the sensor network relies on the IEEE 802.15.4 standard. Borrero and Zabalo  present a

low-cost agriculture-oriented system. The suggested system is based on LoRa technology and can collect various

measurements, such as humidity, ambient temperature, soil moisture, and temperature, and enables a farmer to access

all of the information necessary to achieve efficient irrigation management of crops in real time. The developed wireless

sensor node has been optimized both in hardware and software and exhibits very low power consumption.

3. Energy-Harvesting (EH)

One of the main concerns of the sensor platform’s design is the source of energy. Typically, the energy source is a battery

attached to the sensor platform. It is utilized to provide power to all the required operations, e.g., wireless transmission,

computation, memory, etc. The battery properties (e.g., technology used and size) can determine its lifespan as well as

several other properties, e.g., transmission range. In many systems, the battery is a burden, as it increases the cost of the

system, constrains the platform size, and most importantly, requires to be replaced occasionally. The challenge of saving

power spans all the protocol stack; energy considerations show up in each part of this survey. As with the other layers,

PHY layer innovations have also been suggested as to how to utilize battery power efficiently.

An alternative approach to overcome the battery hurdle is to embed a mechanism that harvests energy. Such a

mechanism can be embedded alongside the battery to extend its lifespan, or more commonly, it can completely replace

the battery so that all the functions rely on it. Batteryless WSNs that rely solely on energy-harvesting (EH)-WSN can

compromise performance; for example, their transmission range can be shorter, the available energy can constrain their

awake time, and so on. One of the main challenges is to locate the ambient resource from which the energy can be

harvested. Many studies have explored different energy sources that can supplement energy, such as solar, vibration,

wind, motion, electromagnetic, and more. Numerous comprehensive technological overviews with their advantages and

limitations, energy harvesting modeling, challenge expectations, and prospects can be found in, for example, Refs. 

. A more recent system design research on battery-free and energy-aware WSNs, which utilize ambient energy

or wireless energy transmission, is given in . It addresses energy supply strategies and provides insight into energy

management methods and possibilities for energy saving at the node and network levels.

Khalid et al.  suggest a zero-power wireless sensor architecture that consists of a capacitive sensor (a sensor that

associates the parameter of interest with the change in the capacitance), an RFID chip, a circulator (allows power flow

between three defined ports), and an antenna (batteryless). The conceptual idea is that the sensor reflects the signal

received from the RFID, with a change in phase, which is relative to the sensed value. Design and implementation of an

energetically autonomous WSN platform for ambient monitoring in indoor environments are suggested by Abella et al. .

The proposed self-powered autonomous sensor node platform relies on embedded photo-voltaic (PV) panels to harvest

the energy, a microcontroller and an RF transceiver with an attached antenna. The suggested architecture was prototyped

and validated experimentally. Lee et al.  propose a floating wireless device with energy harvesting capability. The

floating device is energetically self-sustaining for extended operational hours. It supports long-range communication

between wireless sensor nodes and a gateway relying on the LoRa technology while deployed over a water surface. The

floating device can be used as an environmental monitoring station to remotely collect weather and water quality

information. Ref.  present the design of a wireless sensor node, powered by solar energy, that collects environmental

data and can transmit it across vast distances (directly to the cloud). The architecture presented therein relies on low-

power wide-area network (LPWAN) protocols that provide a long-range communication system with limited data to

transmit and high energy efficiency.

4. Topology

Throughout the survey, the interaction of WSN and IoT will arise in multiple contexts. While this survey mainly deals with

data gathering by means of wireless units, an IoT unit presumes a more high-level entity for localized data gathering. To

assess the connection between these two concepts, the reader is advised to refer to the most recent work by Devadas et

al. , for example, where researchers enumerate the IoT data management frameworks, challenges and issues. The
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chapter focuses on three layers of data management in IoT networks, communication, storage and processing. In

addition, deployment of IoT Data management for smart home and smart city is described.

It is essential to distinguish between a one-directional WSN platform, where sensors merely gather the data and activate a

specific infrastructure and set of technologies to further send it to a sink, and a bi-directional WSN platform, where the

sensors are expected to be able to act according to control messages received from a sink. In the latter case, the sink

might be a higher-level entity (e.g., a cloud-based server). While the general data-gathering techniques are usually

agnostic of the control direction, additional constraints might be imposed. Delay of the responses, latency, BW usage

efficiency, security, and privacy are some of the demands to consider. Another example of a bi-directional platform can be

seen in social sensor clouds (SSC), which connect a social network with a sensor network via a cloud infrastructure. See,

for example, Zhu et al. , which presents a scenario of a smart village and provides discussion on various aspects

including green planning, energy concerns, and speed of data gathering and sharing. In Dinh and Kim , an on-demand

WSN platform is designed. Researchers suggest a data-gathering protocol that addresses bandwidth consumption and

delivery latency and minimizes the number of requests to save resources. An infrastructure where sensors form groups

belonging to private owners constitutes a special case. This may be the case in a smart city environment; this means that

privacy and/or security considerations should be prioritized. This is the topic addressed by Zhu et al. . Researchers

provide a trust-assisted cloud for WSN but have throughput issues in mind. Kuo et al.  suggest a WSN-based IoT

platform that provides a reliable connection between sensors in the field and the database on the Internet. The proposed

platform is based on the IEEE 802.15.4e time-slotted channel-hopping protocol with resource-constrained devices

supporting heterogeneous applications. The paper suggests a scheme that compensates the clock drift for every timeslot

to maintain the clock synchronization required for the time-slotted channel-hopping protocol.

Edge computing, as discussed by Satyanarayanan , allows distributing the data gathering burden across multiple

cloudlets, which might be highly beneficial for large WSN. This platform paradigm aims to improve many important

aspects: reduced latency of data delivery, increased bandwidth, scalability, resilience to possible cloud outages, and

privacy control. However, the platform presumes an initial capital investment and later maintenance.

A virtual sensor network was proposed by Abdelwahab et al. . Once a user-initiated sensing request is dispatched to a

cloud, a suitable set of sensors is found for the task. The decision is made according to the cost function, which depends

on the specific (e.g., monetary) cost of using sensors from the designated set, the benefit that can be received from using

these sensors, and their effectiveness in distances and delays (calculated, e.g., in number of hops from sensor to a

sink/gateway), also expressed as virtual links. The cost might be customized, while a general virtualization problem is

formulated and the algorithm is provided.

Integration of unmanned aerial vehicles (UAVs) and WSN for crop monitoring in precision agriculture is described by

Popescu et al. . Researchers suggest a down-up scheme, where the collected data is hierarchically processed from the

ground level to the cluster head (CH) level, then collected by the UAV level and finally delivered to the cloud for analysis

and possible feedback. Particular emphasis is put on outlying measurements from specific sensors, as they can indicate

either a possible sensor failure or an upcoming unusual event inside the agricultural field. The measured data were

processed through a consensus algorithm. Concurrently, it suppressed outlier values left for further examination for the

cloud-based analysis.

An implementation of a ubiquitous consumer data service for transmitting short messages to any computing platform is

provided by Datta et al. . Researchers demonstrate a data cycle model that allows any device with sensor(s) to report

data encoded in short messages. The raw data reaches a central or distributed computing platform, where it undergoes

transformation and evolves into rich and structured valuable information for higher-layer applications. The proposed data

cycle model and DataTweet architecture are aimed at smart city and large-scale crowd-sensing-based IoT scenarios.

5. Application-Oriented Network Architecture

Ayele et al.  suggest an IoT network architecture for wildlife monitoring systems (WMS) for scenarios in which animals

exhibit sparse mobility, which results in sporadic wireless links. In addition, they suggest a data forwarding enhancement

that adopts the flood-store-carry-and-forward paradigm suggested in the seminal ZebraNet study by Juang et al. , in

which in order to send data to the sink, the nodes disseminate it among themselves until it reaches the sink. Specifically,

each node stores the data needing to be conveyed, waits for connectivity with other nodes, and distributes the data to

them, and they repeat the same process. Accordingly, the data is spread throughout the entire network (i.e., flooding) and

will eventually be received by the sink. Researchers in  suggest leveraging locally available routing parameters to

improve opportunistic data forwarding algorithms by managing the data replication decision.
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Saleh et al.  suggest extending the lifetime of a wireless sensor network used in mobile healthcare applications by

increasing the number of bits transmitted per symbol, and specifically to rely on a quaternary interconnect scheme in

which each transmitted symbol modulates two bits. A complementary neural network, static RAM-based architecture is

suggested to reduce energy consumption in storage and transmissions during the data dissemination process. A WSN

dedicated to home deployment for elderly healthcare and early health emergency alarm is discussed by Alsina-Pagès et

al. . Researchers first raise privacy concerns related to the monitoring, and accordingly, advocate that only sound-

based surveillance aimed to merely indicate alarming situations is appropriate. In order to further conform to the privacy

demands, they focus on distributed architecture (rather than on a centralized one), where each of the WSN sensors sends

encrypted identifiers of their measurement. The identification of events is built on feature extraction. This is done on the

frequency domain by first dividing the incoming signal into blocks with Hamming sliding window, then transforming into the

frequency domain using Discrete Fourier Transform (DFT) to evaluate the contribution of every band of the spectrum. The

final coefficients are obtained after Discrete Cosine Transform (DCT). The conclusive parts of the proposed algorithm

classify the coefficients, feeding them into Support Vector Machines which classifies the estimated audio event.

Researchers assert that the classification results could be further improved by incorporating a deep artificial neural

network (ANN) into their system.

In AbeBer et al. , a similar method was implemented for urban noise monitoring. Namely, while STFT was utilized for

the noise preprocessing, the classification of noise levels and events was performed by convolutional neural networks

(CNNs). Researchers used several previously published networks; see references therein. Similar methods for noise

monitoring WSN were introduced by Siamwala et al. . The frequency-domain analysis was performed. Then,

classification by statistical methods was accomplished (Gaussian mixture model was used). In addition, researchers in 

provide an elaborate WSN architecture, where energy-harvesting solar panels augment the sensors’ lifetime and the

sensors’ state-of-charge is transmitted and tracked by central, more powerful nodes.
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