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Hydrolysis generally refers to the breakdown of polymeric substance into their monomeric building blocks. In the

case of microbial hydrolysis, the breakdown is catalyzed by extracellular enzymes produced by hydrolytic

microorganisms. This article focusses on microbial hydrolysis within the process of anerobic digestion including the

relevant metabolites, microbial consortia and the role of hydrolysis in anerobic digestion systems. 
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1. Introduction to multi-stage anaerobic digestion

Anaerobic digestion can produce bioenergy and value-added products from biodegradable residues; it represents

an approach to close the loop in a circular bioeconomy. Examples are summarized in ,  among others.

Anaerobic digestion is a well-established and mature technology in Europe with more than 18,000 production

plants in 2018 that are already providing about 14% of renewable energy. Moreover, as calculated by the World

Biogas Association, the biogas and biomethane sector of anaerobic digestion can potentially reduce greenhouse

gas emissions by 10–13% .

In brief, anaerobic digestion of biodegradable residues consists of four metabolic stages, as shown in Figure 1.

During hydrolysis, bulk biomass is degraded to soluble carbohydrates, proteins and lipids followed by

acidogenesis, where these are converted mainly to short-chain carboxylic acids (SCCA) and alcohols. In

acetogenesis and methanogenesis, acetic acid is consumed or assimilated and converted to methane and carbon

dioxide. For the vast majority of biodegradable waste, hydrolysis represents the process bottleneck due to slow

rates and incomplete degradation . Many reviews have been published on pretreatment methods of various

biogenic residues to improve hydrolysis which include mechanical, thermal, chemical, biological and mixed

pretreatments. The most promising of these methods concerning hydrolysis efficiency need high-energy inputs

(e.g., thermal/microwave treatment) or huge amounts of chemicals (acidic pretreatment), which makes the process

costly in industrial scale . The introduction of a separate reactor stage focused on microbial hydrolysis in

anaerobic digestion has already shown to increase the net energy output in pilot scale fermentations, making it a

promising as potential biological pretreatment. Separation of the hydrolysis–acidogenesis and acetogenesis–

methanogenesis enables the optimization of process parameters to the different conditions of the corresponding

microorganism, enabling higher efficiency in hydrolysis and methanogenesis . While hydrolytic and

acidogenic microorganisms favor a slightly acidic pH around 5.0–6.0, the methanogenic species are rather
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sensitive and thrive at neutral pH and mesophilic conditions. There are some examples of a separate hydrolysis

and acidogenesis in a three stage AD, the strong syntrophic relationship between acetogens and methanogens

makes the separation of the last stages adverse .

Since currently more complex and unsteady sources of organic residues are used as substrates for AD,

flexibilization of AD is of high importance. Microbial communities in a hydrolysis stage are able to adapt to changing

substrates and loading rates and are able to digest the biogenic residues under optimal process conditions .

Figure 1. Metabolic pathways of anaerobic digestion and involved microorganisms. LCFA—long-chain fatty acids,

SCCA—short chain carboxylic acid

Microbial Consortia and the Main Products in a Microbial
Hydrolysis Stage

The substrates for anaerobic digestion are very diverse and can roughly be divided into three groups: liquid

residues, solid residues and lignocellulosic residues. While all the substrates are biodegradable, they feature very

different biochemical properties and composition. Substrates high in easily digestible sugars as food waste are

easier to digest than lignocellulosic substrates like grass silage. Nonetheless, all contain polymers that need to be

hydrolyzed .  
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These polymeric substances (lipids, proteins, carbohydrates) in the substrate are broken down into low molecular-

weight intermediates with molecular weight < 1000 Da by extracellular enzymes, which are secreted by the

microbial community. The intermediates are then taken up by the cells. The extracellular hydrolases as e.g.,

lipases, proteases and glucosidases are expressed free into the fluid phase, bound to microbial membranes or

immobilized in a multi-enzyme complex called the cellulosome . Cellulolytic microorganisms have developed

complex enzyme systems for the hydrolysis of recalcitrant cellulosic biomass, as discussed by Himmel and co-

workers . Enzyme expression and enzymatic activity are of high significance for the hydrolytic step in anaerobic

digestion . Some intermediates produced in hydrolysis as ammonia and LCFA were found to have inhibiting

effects on the anerobic digestion process and require acclimatization of the microbial community or operational

strategies for efficient digestion. Moreover, hydrolytic organisms metabolize the monomers produced by hydrolytic

enzymes and concurrently produce intermediates from acidogenesis as SCCA and hydrogen.

Anaerobic digesters are usually inoculated with a mixed microbial consortia from running fermentations. Depending

on parameters like substrate, inoculum and environmental growth conditions, the microbial community develops

over time. The hydrolysis stage is usually dominated by bacteria like Bacteroidetes, Firmicutes and Proteobacteria.

However, changing process conditions and substrates promote the enrichment of various microorganisms .

Among them, anaerobic fungi like Neocalimastix, Piromyces and Orpinomyces play an important role in hydrolysis

and fiber degradation due to a strong multi-enzyme system to degrade cellulosic material . Moreover, aerobic

fungi like white-rot fungi are common for digestion of lignocellulosic biomass . In the hydrolysis stage, different

metabolic types of fermentation have been identified with their bacterial key players. Butyric type fermentation with

high production of acetic acid, butyric acid and hydrogen with dominance of Clostridium is considered best for two-

stage AD and can be influenced by process parameters as pH, organic loading rate (OLR), oxidation–reduction

potential  and hydraulic retention time (HRT) . The influence of OLR seems to vary with the substrate, but

various groups found that pH > 5.0 favors butyric type fermentation, whereas a lower pH leads to dominance of

Lactobacilli producing lactic acid or ethanol metabolism . Ethanol-type fermentation is observed mostly at

pH 4.0–4.5 and may feature high gas production . More alkaline pH favors production of acetic acid while

inhibiting growth of methanogens . Propionic acid is another mayor fermentation product. Depending on the

substrate, it can reach a proportion of 20–40%, predominantly in AD of protein-rich waste as sunflower oil cake

 or waste activated sludge . It has been found that in the AD of carbohydrate-rich substrate, acetate and

propionate are dominant at mesophilic temperature and acidic pH, whereas the fermentation shifts to butyrate at

thermophilic AD . While the fermentation type is always substrate-dependent, the pH plays a significant role

in selecting the fermentation type and the distribution of SCCA . Since butyric type fermentation is

considered best for two-stage AD, pH regulation towards pH 5.0–6.0 in the hydrolysis stage plays a significant role

for total process performance.

Stage separation of AD allows the enrichment of specific microorganism in each digester. The second stage of AD

is dominated by methanogenic archaea that have a higher sensitivity for process conditions like temperature and

pH than the hydrolytic bacteria. pH below 6.5 and thermophilic temperature decrease archaea diversity . In a

study of Hameed et al., the abundance of Methanosarcina—assumed to be a main producer of methane in biogas

production—was reduced from 76.7% to 23.8%, and also the alpha diversity decreased with a shift from 35 °C to
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55 °C . As a diverse microbiome is assumed to be more stable, staging of AD leads to a better process

performance. Hydrolysis rate and deactivation of pathogens are increased with a rising temperature, making a

thermophilic process (50 °C–60 °C) attractive. The traditional mesophilic process (30 °C–40 °C) offers higher OLR,

better stability and less energy requirements. A good compromise seems to be the temperature-phased AD with a

thermophilic hydrolysis stage and mesophilic second stage .

The knowledge about microbial communities and metabolic pathways in AD is very important to understand and

adapt the process conditions for the desired products. The authors would like to refer to the review on the

dynamics of the microbiome in AD by the group of Castellano-Hinojosa et al. for further information .

3. Microbial Hydrolysis in a Separate Stage

Reviews on multi-stage AD systems for biodegradable waste have been published by Van et al.  and Chatterjee

and Mazumder  who conclude, that two-stage AD is a robust, flexible and efficient system offering shorter

hydraulic retention times (HRT), higher organic loading rates (OLR), higher digester efficiency and higher gas

yields compared to single-stage AD. Two-stage AD is most efficient for biogenic residues with a solid content

between 3–20%. Below a solid content of 3%, the single-stage AD is more efficient in terms of energy efficiency,

whereas for high solid substrate, there is a significant increase in required energy input to dilute the substrate in a

continuously stirred tank reactor (CSTR) system . The process is more resistant to shock loadings and

variable substrate, making it a promising system for the application in biorefinery systems . The better hydrolysis

and acidogenesis also improve digestate stability and thus lower the environmental impact of the residues of AD.

Compared to the conventional monodigester, two-stage AD improved the biostabilization efficiency of codigested

FW and waste water sludge from 6.5% to 40.6% The application of digestate as fertilizer is facilitated .

The implementation of a separate hydrolysis–acidogenesis stage in AD allows the concurrent production of

hydrogen, SCCA and methane. While sequential production of hydrogen and methane improves energy efficiency,

there are also various other potentials downstream from a hydrogen-producing hydrolysis stage featuring photo-

fermentation, power generation in a microbial electrolyzer or a biochemical stage for biopolymer production. Rising

interest has evolved in the production of biohythane via two-stage AD, a hydrogen-enriched biogas with better

quality, good caloric efficiency and enhanced combustion. The hydrogen proportion in biohythane varies from 10–

30% v/v of hydrogen, but also a low proportion enhances the combustion properties of a biogas blend .

Simultaneous production makes the process a good biorefinery concept, being more sustainable and economically

viable .

There are a few studies that actually compare the efficiency of a hydrolysis stage with another pretreatment option.

Shahriari et al. evaluated AD of liquid and solid kitchen waste with and without microwave pretreatment in single-

and two-stage AD. Two-stage AD showed higher yields for liquid kitchen waste, while the microwave pretreatment

was more effective for solid waste. Regarding overall energy efficiency though, they concluded that the hydrolysis

stage offers more benefits than microwave pretreatment . Similarly a full-scale co-digestion biogas plant has
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been upgraded with a hydrolysis stage instead of using the former practice of ultrasonic pretreatment as it

promised higher yields, higher OLR and lower HRT .

Anaerobic digestion with a separate hydrolysis stage is mostly conducted without any treatment except some

shredding of bulk substrate. Stage separation widens possible applications of the whole process with the

introduction of intermediary steps or recirculation. It was reported, that AD of acidic citrus waste, where low pH and

the main component D-limonene (68–98%) are toxic for many microorganisms, is feasible using two-stage AD. pH

control in the hydrolysis stage via effluent recirculation helps to relieve the toxic effects of D-limonene, which is

mostly retained in the first stage or can be filtrated, thus lowering the inhibitory effect on the sensitive methanogens

. The potential to use the hydrolysis stage as a detoxification step was also explored. It was found that inhibitors

built up during hydrothermal pretreatment of solid waste can be removed by acidogenic bacteria in the hydrolysis

step . Likewise, inhibitors from thermal or chemical pretreatment of lignocellulosic biomass are degradable in the

first stage by certain microbes . Biological detoxification was examined with various microorganism like

Coniochaeta ligniaria that can metabolize furans, among others. The drawbacks of biological detoxification are long

process times and the consumption of sugars . Countermeasures to relieve problems with inhibitors comprise

methods of feedstock engineering, detoxification steps and genetic or evolutionary engineering, which are either

feedstock specific or require several process steps . Integrating a microbial detoxification step in two-stage AD

may be a promising method to combine the advantages of pretreatment and a two-stage AD.

The stable process within a two-stage AD provides a better basis for on-demand production of biogas. Biomass-

derived energy has the potential to balance fluctuating natural power sources like solar and wind energy, as

biomass is highly available and AD predictable . By variation of substrate addition intervals or mass flow rate,

the methane production can be controlled also within conventional AD systems, but problems might occur due to

substrate overload and quick acidification . Fluctuating OLR and shock loadings in the hydrolysis stage were

proven to have no influence on the total specific final product yields . Depending on the substrate, the

reaction time of higher methane production lays within days or weeks in a single-stage AD. The two-stage system

offers higher flexibility by different options. Firstly, higher hydrolysis rates enable faster changes of methane

production as shown by Linke et al., who demonstrated daily differences of 50–60% methane production with

variable feeding in a two-stage system . Secondly, the SCCA-rich effluent of the hydrolysis stage can be stored

easily and fed to the second stage for gas-production on demand. As the hydrolysate mainly consists of readily

degradable material, methane production can be raised within hours . On-demand production of biogas was

also shown for the lignocellulosic substrate grass silage by operational changes in recirculation .

Overall, the optimization and control of microbial hydrolysis in a separate stage in anaerobic digestion offers many

advantages and can reduce costs and environmental impact. More information on possible reactor configurations,

process conditions and integration into biorefinery systems can be found in the Review of Menzel et al. .
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