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The selective catalytic reduction (SCR) has been widely used in industrial denitrification owing to its high

denitrification efficiency, low operating costs, and simple operating procedures. However, coal containing a large

amount of sulfur will produce SO  during combustion, which makes the catalyst easy to be deactivated, thus

limiting the application of this technology. This review summarizes the latest NH -SCR reaction mechanisms and

the deactivation mechanism of catalyst in SO -containing flue gas. Some strategies are summarized for enhancing

the poison-resistance through modification, improvement of support, the preparation of complex oxide catalyst,

optimizing the preparation methods, and acidification. The mechanism of improving sulfur resistance of catalysts at

low temperatures is summarized, and the further development of the catalyst is also prospected. This paper could

provide a reference and guidance for the development of SO  resistance of the catalyst at low temperatures.

selective catalytic reduction  SO2 resistance at low temperature  catalyst modification  NOx

NH3-SCR

1. Introduction

Nitrogen oxide (NO ) is a general term composed of nitrogen, oxygen, and other compounds. It is one of the major

pollutants from the exhaust gas of thermal power plants, industrial furnaces, motor vehicles, ship exhaust

emissions, and includes N O, NO, NO , etc.—among which NO and NO  account for the largest proportion . A

large amount of NO  emitted into the air will cause a series of environmental concerns. Therefore, exploring and

developing efficient exhaust gas deNO  technology has been an area of intense investigation. Among all flue gas

denitrification technologies, selective catalytic reduction (SCR) is an extensively applied technology due to its low

reaction temperature and high denitrification efficiency . Selective catalytic reduction (SCR) mainly refers to the

reaction of NO  using NH  as a reducing agent in the presence of O  to produce pollution-free N and H O, whose

core is the catalyst.

2. SO  Poisoning Mechanism of Low-Temperature Catalyst

At present, some power plants adopt wet desulfurization to remove SO  with lower flue gas temperature, failing to

meet the reaction requirements of V O /TiO  catalyst. Therefore, there are many drawbacks such as low

denitrification efficiency and catalyst waste. After desulfurization, tiny amounts of SO  still exist in the exhaust gas,

bringing about the deactivation of SCR catalyst. Therefore, developing a vanadium-free catalyst with great

denitrification performance and sulfur and water resistance at low temperatures is extremely necessary . To solve
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the sulfur poisoning of catalysts, many scholars have done a lot of research and elaborated on the poisoning

mechanism in detail.

From the above studies, the SO  deactivation mechanism on the catalyst at low temperatures can be observed

mainly in the following three aspects. (1) The ammonium sulfate and ammonium bisulfate are formed by the

reaction of SO  and NH  in the presence of O and attach to the catalyst surface, which can decrease the surface

area, pore volume, and pore size of the catalyst, and then reduce the reaction rate. However, ammonium sulfate

and ammonium bicarbonate will self-decompose when the NH -SCR reaction is carried out above 280 °C and 350

°C, respectively, so the catalytic activity is able to be restored by the washing method at low temperatures . (2) In

the presence of O , SO  will react with the active component (mainly transition metal) on the catalyst surface to

generate metal sulfate salt, which will cause irreversible deactivation of the catalyst. (3) SO  will compete with NO

at the adsorption sites on the catalyst surface when these acidic gases are present in the reaction system, which

would reduce the formation of SCR intermediate products and the catalytic efficiency of catalyst. Figure 1-3 show

the mechanism of catalyst sulfur poisoning.

Figure 1. The formation process of (NH ) SO  and NH HSO

Figure 2. Sulfation of active components.
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Figure 3. Competitive adsorption of NO and SO

3. Research Progress of SO  Resistance Catalyst at Low
Temperatures

Catalyst is usually composed of active component and support, and there are other forms of catalysts such as

composite oxide catalysts. To enhance the low-temperature sulfur resistance of catalysts, many scholars have

focused their attention on the improvement of active components and supports. In addition, some scholars have

found that the preparation method—the handling catalyst by acidification and reaction conditions—can make a

difference in the SO  resistance of catalyst.

3.1. Effects of Active Components

The active component, which is composed of one or more substances, is the main unit of catalyst and affects the

NH -SCR reaction significantly. Using rare earth metals as well as transition metal oxides to improve active

components is one of the most effective methods to improve sulfur resistance at low temperatures. We mainly

summarized the SCR performance and/or SO  resistance mechanism of catalysts modified with Ce, Fe, Cu, W and

other metal elements, as shown in Figure 4-9.
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Figure 4. The sulfation mechanism of Ce-modified Mn–Ce/TiO catalyst .

Figure 5. Influence of SO  on NO  conversion of FeMnO  and Ce(y) catalysts. Reaction conditions: [NO] = [NH ] =

0.1%; [SO ] = 100 ppm; [O ] = 3%; N  balance, GHSV = 30,000 h ; reaction temperature = 120 °C .
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Figure 6. The mechanism of sulfur poisoning at low temperatures of catalysts (a) V1Ti; (b) V(x)WTi; (c)

V1CeWTi .

Figure 7. The reaction flow chart of Fe–Mn–Ce/γ-Al O  catalyst .
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Figure 8. SO  durability of catalysts (A) SO  durability over Ti1/CeO  and Ti1Cuy/CeO  catalysts at 200 °C (B)

SO  durability over Ti1/CeO  and Ti1Cuy/CeO  catalysts at 300 °C. (C) H O/H O + SO  durability over Ti1/CeO

and Ti1Cuy/CeO  at 300 °C .

Figure 9. Mechanism of Cr doping improving sulfur resistance of Cr–V/TiO  catalyst .

Above all, the content of oxygen adsorbed on the active material and catalyst surface—and even the number of

acid sites—could be increased by adding Ce, Fe, Cu, W, and others to the active components, which would

accelerate the rapid reaction of SCR and increase the catalytic performance of catalyst. Under the reaction

conditions containing SO , these additives can preferentially react with SO  as the SO  catchers to avoid the

sulfation of active substances. Besides, the stability of NH HSO  and (NH4) SO  on the surface was reduced, and

the low-temperature sulfur tolerance of catalyst was effectively improved. It is believed that transition metals and

rare earth elements will have promising applications in improving sulfur resistance of catalyst at low temperatures.
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Figure 10 shows the typical SO -tolerant modified catalyst at low temperatures for selective catalytic reduction

(SCR) reaction.

Figure 10. Typical SO -tolerant modified catalyst at low temperatures for selective catalytic reduction (SCR)

reaction .

3.2. Effects of Supports

The support of catalyst is of vital importance in the catalytic activity. Loading the active components onto the

support contributes to improving the specific surface area, thermal resistance, and mechanical strength of catalyst.

Especially, the supports can slow down SO  poisoning on the catalytic activity of catalyst. As of now, there are

TiO , Al O , activated carbon and zeolites, and other conventional supports in practical application, as shown in

Figure 11 and Figure 12. However, different supports show different catalytic activity and sulfur resistance, which

makes the research and improvement of the support become a part of the emphasis of research to improve the

low-temperature SO  resistance of catalyst. Figure 13 shows the typical SO -tolerant catalysts with different

supports at low temperatures for SCR reaction.
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Figure 11. Sulfur resistance mechanism of (a) CeO , (b) Ce/Ti and (c) Ti/Ce catalyst .

Figure 12. Reaction mechanism of Ce–Fe/WMH catalyst .
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Figure 13. Typical SO -tolerant catalysts with different supports at low temperatures for SCR reaction

.

3.3. Composite Oxide Catalysts

In recent years, extensive work has been done in the area of composite oxide catalyst. Compared with the

supported catalysts, these catalysts all use metal oxides and have no clear support or active components. Many

achievements have been made in the research of the catalytic performance and sulfur tolerance of catalyst.

3.4. Other Strategies to Improve the SO  Resistance

Among all the measures to enhance the sulfur resistance of the catalyst, some researchers have tried to find the

influence of preparation methods，acidification，preparation and reaction conditions, further promoting the acidity

and catalytic efficiency of catalyst. 

4. Conclusions and Perspectives

Facing progressively strict legislation and policies to control NO emission, the research and design of low-

temperature catalysts for NH -SCR have received a great deal of attention. Although the poisoning mechanism of

catalyst at low temperatures has been studied thoroughly, how to maintain the high catalytic efficiency of catalyst at
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low temperatures and promote the SO -resistance-poisoning ability of catalyst to achieve practical application is

still an urgent problem.

In the presence of O , SO  is easily formed on the catalyst due to the oxidation reaction of SO , and further

combined with NH  to produce NH HSO  and/or (NH ) SO , which can deposit on the surface of catalyst and

inhibit the reaction gas to be adsorbed on the catalyst to participate in the SCR reaction. Besides, sulfate of active

components can be formed and cause irreversible deactivation of catalyst. Therefore, it is effective to adopt several

measurements to improve the SO  tolerance. Firstly, it is to reduce the adsorption of SO  on the catalyst. The

highly acidic catalysts are effective to prevent the SO  adsorbing. Secondly, preventing the oxidation of SO to SO

plays a significant role in high SO  tolerance by reducing the redox ability of catalyst, which can cut off the

oxidation of SO  to some extent. Furthermore, the synergistic effect between catalyst components can also

improve the sulfur resistance of catalyst, such as the construction of sacrificial sites, which is responsible for the

reduction of active components sulfation. Along with these existing excellent sulfur resistant catalysts, it is expected

that future studies will focus on optimizing the supports and preparation methods and concentrating on the

application of new structures and technology, which are effective strategies to improve the low-temperature SO

tolerance of SCR catalysts.
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