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The current focus on renewable energy sources and the circular economy favors the thermal conversion of low-quality

fuels, such as biomass and waste. However, the main limitation of their usability in the power sector is the risk of slagging,

fouling, ash deposition, and high-temperature corrosion. These problems may be avoided or significantly mitigated by the

application of aluminosilicate clay minerals as fuel additives.
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1. Introduction

The depletion of fossil fuels and their adverse impact on the environment, along with the unstable situation in the global

energy market, has resulted in a growing interest in alternative energy sources. As presented in Table 1, the share of

fossil fuels in global primary energy consumption declined from 85.9% in 2015 to 83.1% in 2020 with the simultaneous

rise of renewable energy sources from 3.3% to 5.7%. Among the renewables, biomass plays a significant role as it is

considered a sustainable, flexible fuel that can be used in both developed and developing countries for the transition to a

low-carbon economy . At the same time, the general amount of waste produced worldwide is growing together with

economic growth and industrialization . The total global production of waste has reached seven to nine billion tonnes

per year , including two billion tonnes of municipal solid waste (MSW) . Since not all waste can be recycled, thermal

treatment is considered a sustainable method for managing mixed, contaminated, and residual MSW  as it provides

both material utilization and energy recovery .

Table 1. Primary energy consumption in the world in 2015 and 2020 .

Energy Source

Primary Energy Consumption in the World

2015 2020

EJ % EJ %

Fossil fuels

Oil 183.63 33.7 173.73 31.2

Natural Gas 125.22 23 137.62 24.7

Coal 158.64 29.1 151.42 27.2

Total fossil 467.49 85.9 462.77 83.1

Non-Fossil fuels

Nuclear 23.46 4.3 23.98 4.3

Hydro 35.38 6.5 38.16 6.9

Renewable 18.1 3.3 31.71 5.7

Total non-fossil 76.94 14.1 93.85 16.9

Total all sources 544.43 100.0 556.62 100.0

Aside from unquestionable benefits, biomass and waste may be considered low-quality fuels, whose specific properties

limit their usability in the power sector. The limitations are directly associated with the chemical composition of biomass

and waste, most importantly the elevated contents of chlorine (Cl), sodium (Na), and potassium (K), resulting in low ash

fusion temperatures (AFTs) . Some types of farming residues may be characterized by an extreme chlorine

content of above 10% . Similar Cl concentrations may occur in waste since plastic and biowaste, the two main chlorine
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sources in MSW, comprise the main fractions of mixed waste collected from households . The presence of chlorine

leads to the formation of low-melting mixtures containing metal chlorides and, thus, to high-temperature corrosion through

the multi-step active oxidation process . Chlorine and alkalis tend to merge with silica, which occurs in the ash mainly

as silica (SiO ), and reduce the fluid temperatures from approximately 1700 °C (melting point of SiO ) to approximately

750 °C. As a result of such a process, the AFTs of biomass and waste are usually lower than those of typical coals; for

instance, the initial deformation temperature of biomass ash can be as low as 700 °C . Such low melting tendencies

lead directly to issues such as formation of deposits on heating surfaces of a boiler, slagging, fouling, high-temperature

corrosion, bed agglomeration (defluidization) in circulating fluidized bed (CFB), boilers, and increased particulate matter

(PM) emission , as clearly indicated by both experimental research and industrial experience 

. These issues are not specific to biomass and waste but are likely to occur during the combustion of low-rank coals,

as well.

Several methods for the reduction of the above problems, such as fuel mixing (blending), washing (leaching out) the

unwanted elements, and the use of fuel additives have been investigated . Among the additives, four main

groups can be determined :

Aluminosilicates-based additives;

Calcium-based additives;

Sulphur-based additives;

Phosphorous additives.

Among these groups, aluminosilicate clays seem particularly promising, as they are easy to handle, commonly occurring

natural minerals. Their application as fuel additives may be an environmental-friendly and cost-effective remedy for

operational issues of low-quality fuels. Their presence is expected to improve the ash characteristics, prevent corrosion

damages, reduce particulate matter emission, and capture heavy metals in the ash. Despite the unquestionable benefits

of aluminosilicates application, there is no comprehensive literature review on this field. According to the authors’ best

knowledge, the available data tend to elaborate all groups of additives, and not enough attention is paid to the latest

findings on aluminosilicates.

2. Characteristics of Aluminosilicate Clay Minerals

Aluminosilicate clay minerals belong to the kaolinite-serpentine subgroup and are described by the general chemical

formula Al Si O (OH) . They are characterized by electroneutral layered structures with tetrahedral and octahedral sheets

held together by water molecules or secondary forces such as hydrogen bonding . Despite kaolin, halloysite, and

bentonite, other clays such as dickite and nacrite also belong to this subgroup; however, they are less popular among

industrial users. Industrial interest in kaolin, halloysite, and bentonite results from their large deposits located in Poland, as

well as many other countries in the world  (Figure 1).

Figure 1. Aluminosilicate clay minerals deposits in Poland .

Aluminosilicates are suitable for diverse industrial applications, presented in Figure 2. They are commonly used as

feedstock for the ceramic, chemical, and paper industries . Due to their predisposition for high adsorption, they can be

[19]

[20]

2 2

[21]

[22][23][24][25][26][27][28][29] [30][31]

[32][33]

[34][35][36][37][38]

[39][40]

2 2 5 4
[41]

[42][43]

[43]

[44]



used as sorbents for petrochemicals, as catalysts, in cosmetics, or as dietary supplements for cattle . Their latest

application paths are composite materials  and biomedicine .

Figure 2. Common applications of aluminosilicate clay minerals.

Aluminosilicates can be considered excellent fuel additives since they meet all the specific requirements: they are

characterized by high porosity and high specific surface, high reactivity, high melting points, and non-toxicity . They

are claimed to have no negative influence on the combustion process, which means they do not lower the combustion

efficiency or favor the formation of any pollutants . Their chemical stability and powdery structure make them easy to

transport, store, and apply. They are characterized by low operational costs, as they occur commonly around the world,

and do not require advanced pre-processing before use .

2.1. Halloysite

Halloysite (Al Si O (OH) ·2H O) draws the researchers’ attention due to its unique structure. Microstructural and

nanostructural analysis of various halloysite samples revealed either the dominance of halloysite nanoplates (HNP), a mix

of halloysite nanoplates and halloysite nanotubes (HNT), or predominantly nanotubular structure . The mixed structure

of halloysite consisting of both HNP and HNT is presented in Figure 3a with its chemical composition. Halloysite

nanotubes are composed of two layers with mostly a hollow, slender cylindrical structure in the submicron ambit .

Among other minerals in its group, halloysite features a higher value of the specific surface area (60–80 m /g) than the

surface area of kaolin (3–12 m /g) and the high porosity of structure. Therefore, composite materials using halloysite are

becoming increasingly popular, a fascinating application of which is polyaniline-halloysite nano clay hybrid composites that

can produce sensors and corrosion-resistant coatings . Another potential application of halloysite is its use as a

reinforcement in composites based on soy protein/basil seed gum used for the production of food packaging . Finally,

the potential use of halloysite also concerns materials limiting the growth of Escherichia coli bacteria . Halloysite from

European deposits (Figure 3b) may consist of some impurifications, mainly iron oxides, which can be considered

beneficial in terms of catalytic properties . The unique structural characteristics of halloysite make it the best

prospective fuel additive among those considered.
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Figure 3. Scanning electron microscope (SEM) image of halloysite from USA together with results of the chemical

composition analysis obtained using the Energy-dispersive (EDS) X-ray characteristic (a), SEM image of halloysite from

Europe, together with results of the chemical composition analysis obtained using the EDS X-ray characteristic (b).

2.2. Kaolin

Another aluminosilicate mineral is kaolin, with a chemical composition of Al Si O (OH) . It is a layered silicate mineral,

with one sheet of silica tetrahedron SiO4−4SiO44− through small atoms with one sheet of alumina octahedron

Al(OH)3−6Al(OH)63−. As presented in Figure 4, it features a predominantly plate structure. Kaolin is, among all types of

clay, defined as the least reactive one since it is characterized by a relatively small specific surface (3–12 m /g) . When

heated, kaolin is transformed into metakaolin and further into quartz and mullite . Kaolin-based slurries have a wide

range of applications, such as diaphragm walls, drilling fluids, adhesives, cosmetics, refractories, and pharmaceuticals,

due to their abundance in nature, low cost, and lack of swelling . An increasingly popular application of kaolin is its use

as an additive to composites, mainly based on polymers and biopolymers .

Figure 4. SEM image of Kaolin together with results of the chemical composition analysis obtained using the EDS X-ray

characteristic.

2.3. Bentonite

A widely studied member of the aluminosilicates group is bentonite, which can be characterized as an absorbent swelling

clay consisting mainly of montmorillonite. In addition, there is bentonite, in which there is a Na- or Ca-based

montmorillonite. Similar to kaolin, bentonite features a plate structure, as presented in Figure 5. One of the main

applications of bentonite is its use in the production of barrier materials . The volume of the bentonite can increase

several times after swelling, reducing the volume of the flow channels. Compared to other materials of this type, bentonite

barriers are characterized by lower permeability and costs. Therefore, in recent years, various bentonite barriers have

been developed and used . The latest research focuses on the potential use of bentonite for filtration and sealing water

and gas extraction processes, especially at high temperatures .
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Figure 5. SEM image of bentonite with results of the chemical composition analysis obtained using the EDS X-ray

characteristic.
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