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Mangrove forests sequester a significant amount of organic matter in their sediment and are recognized as an important
carbon storage source (i.e., blue carbon, including in seagrass ecosystems and other coastal wetlands). The methane-
producing archaea in anaerobic sediments releases methane, a greenhouse gas species. The contribution to total
greenhouse gas emissions from mangrove ecosystems remains controversial. However, the intensity CH4 emissions from
anaerobic mangrove sediment is known to be sensitive to environmental changes, and the sediment is exposed to oxygen
by methanotrophic (CH4-oxidizing) bacteria as well as to anthropogenic impacts and climate change in mangrove forests.
This review discusses the major factors decreasing the effect of mangroves on CH4 emissions from sediment, the
significance of ecosystem protection regarding forest biomass and the hydrosphere/soil environment, and how to evaluate
emission status geospatially. An innovative “digital-twin” system overcoming the difficulty of field observation is required for
suggesting sustainable mitigation in mangrove ecosystems, such as a locally/regionally/globally heterogenous environment

with various random factors.

geospatial greenhouse gas carbon storage

| 1. Introduction

The carbon (C) sequestered in the biomass and deep sediment of vegetated coastal ecosystems, including mangroves,
seagrass beds, and tidal marshes, has been called “blue carbon” 2, Although vegetated coastal habitats cover a relatively
small area (<2%) of the coastal ocean, they have C burial rates that are 40 times higher than tropical rainforests and
account for more than half of the C burial in marine sediment !,

Although the global area of vegetated ecosystems is one to two orders of magnitude smaller than that of terrestrial forests,
the contribution of vegetated coastal habitats per unit area to long-term C sequestration is much greater, which is in part
because of their efficiency in trapping suspended matter and associated organic C during tidal inundation . Among
vegetated ecosystems, mangroves have been well highlighted as among the major sources of organic matter in tropical
areas because they occupy a large part of the tropical coastal area [4l. Additionally, organic C production is more rapid in

these areas than for other estuarine and marine primary producers EI3].

Mangrove forests have gained attention because of their high C productivity B2 and because they are among the most C-
rich ecosystems in the world B2, The total net primary production of mangroves is approximately 200 Tg C year~! [0J11]
but most of this C is lost or recycled via CO, flux to the atmosphere (34.1 Tg C year™, ~20%) or is exported as particulate
organic C, dissolved organic C, and dissolved inorganic C to the ocean (117.9 Tg C year™; ~60%) (1112 Of the remaining
C, burial accounts for 18.4 to 34.4 Tg C year ! [LIEIIO13II4] and this blue C is considered to represent a significant long-
term storage of atmospheric CO, 13I8, The global C sequestration rate in mangrove wetlands is 174 g C m™ year 2, on
average, corresponding to about 10% to 15% of global coastal ocean C . Organic-rich soils dominate in mangrove C

storage, accounting for 49% to 98% of C stocks in mangrove wetlands 116,
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Global mangroves are mainly distributed along tropical and subtropical coastlines, covering 137,760 km2. The world’s
largest mangrove areas are in low latitudinal regions, such as Indonesia (22.6% of the global total), Australia (7.1%), and
Brazil (7.0%) 17, The world’s best developed mangrove forests can be found in the Sundarbans, the Mekong Delta, the
Amazon, Madagascar, and Southeast Asia 7. Furthermore, Indonesia has the highest mangrove species diversity (48
species [12l) and exceptionally high C stocks in mangrove sediment (2], Because the economic/population growth in those
area is also substantial, the loss of mangrove forest due to anthropogenic impacts is substantial globally 2218119 | oss
rates vary greatly between countries, ranging from 1% to 20% of the total mangrove forest area, so predicting global
mangrove forest changes in the future is difficult 9. Loss of mangroves by clearing, conversion to industrial
estates/aquaculture, and changes in drainage patterns lead to striking changes in soil chemistry and usually result in rapid

emission rates of greenhouse gases [21122]123],

| 2. Methane Flux from Mangrove Forests
2.1. Significance of Methane Emission from Mangrove Forests

The magnitude of CH4 flux in mangrove forests and its relative contribution to global warming compared to CO2 flux
remains controversial. The global scale practice of the mangrove C budget has shown that CH, emissions from soil are 2 Tg
C year! . Considering its global warming potential, the contribution of CH, emissions is comparable to the above-
mentioned rate of C burial (18-34 Tg C year ) and C emission by soil respiration (34 Tg C year™!) [LIRI1013I14] Recent
studies have reported a significant amount of CH, flux from mangrove sediment [24125](261[271[28]29][30)[31] 4nq have claimed
that the contribution of CH, flux to global warming was non-negligible in estuarine mangrove forests, which could account for
18% to 22% of blue C burial rates 131 and 9% to 33% of plant CO, sequestration 2. However, observed CH4 flux from
mangrove soils is mostly negligible compared to CO, emissions from sediment but is highly variable [33I34][35][36][37][38][39][40]
(411[42]43]44] ' particularly for non-polluted mangrove sediment [2LIB31I145]46]1471[48] T confirm this observation, the authors
compared incubation experiments with mangrove sediment collected from the Vietnamese Mekong delta and the Indian
Sundarbans forest 84, CH, production was equivalent to only 0.05 to 0.27% of the CO, production under aerobic incubation
or 0.05 to 0.22% under anaerobic incubation conditions, even when considering the potential difference caused by (n = 30 in

each incubation experiments).

2.2. Factors Associated with Methane Emission
2.2.1. Soil Conditions

Low CH, production and emission in mangrove sediment compared to in interior wetland soils is mainly due to the high
presence of sulphate in mangrove sediment, which allows sulphate-reducing bacteria to outcompete CH,4-producing archea
(i.e., methanogens) [321411142][43]  However, soil salinity and sulphate concentration show a low negative relationship with
methane-producing activities, which suggests that both forms of methanogenesis are not completely inhibited by sulphate
reducers with increasing sulphate concentrations 21, A significant increase in CH, production activity caused by the dilution
of seawater was also reported 241, Therefore, mangrove sediment CH, production activity is highly and non-linearly sensitive
to its specific soil pH/electrical conductivity by being affected by different freshwater intrusion intensities. Despite few studies
on the impact of freshwater intrusion on CH, emission, it is still important to evaluate because rice paddies/agricultural fields

are often found adjacent to protected mangrove zones (Figure 1). Regardless of a significant correlation between
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salinity/sulphate concentration in sediment and CH, emissions [B4l2149 CH, production activity can be significantly

increased by the dilution of seawater concentration 4],

Figure 1. Reforestation zone in Sundarbans mangrove area in India (a), protected mangrove forest adjacent to rice paddies

(b), and vegetable-growing field adjacent to mangrove forests (c) in Soc Trang, Vietnam.

Another reason for decreased CH, production is that compared to herbaceous organic matter, woody organic matter derived
from mangrove trees is relatively recalcitrant to methanogens using it as a substrate 24!, Additionally, mangrove ecosystems
are inundated by irregular periodic tides affected by the tidally mediated exchange of porewater between sediment and
surface water via the ebb and flow of tides 194511461 The tidally mediated exchange of porewater between sediment and
surface water occurs via the ebb and flow of tides (i.e., tidal pumping BABLG2I53  Tidal pumping is a potential source of
solutes to mangrove water and causes ebullition, but the process has only recently been quantified and directly linked to the
export of C and nutrients 53I34], |n addition to the spatio-temporal heterogeneity caused by irregular tidal pumping, CH,4 flux
is spatio-temporally heterogeneous and is highly variable because of the heterogenic spatial distribution of aerial mangrove
tree roots B3 and burrows created by crabs/goby fish. Such activity enhances hydraulic connectivity and increases the
surface area of the sediment—water interface 28 where the exchange of the by-products of subterranean respiration can
occur during tidal inundation BZI58IBAA6LI62] Owing to the difficulty of observing CH, flux precisely, CH, data for mangrove

forests are limited compared to data observing interior wetlands and underestimate the global emission 131461,
2.2.2. Methanogenic and Methanotrophic Communities

Although CH, flux micrometeorological observation data are limited 2 recent studies on the community structures of
methanogens and methanotrophs have revealed the biological processes common to interior wetlands and as unique
characteristics in coastal wetlands. Previous studies on CH, metabolism have indicated that CH, emission in natural
ecosystems is largely driven by microorganisms, especially methanogens and methanotrophs [E3I64I6SJ66I67] Highly diverse
methanogenic and methanotrophic communities can promote CH, production and oxidation E88J. However, different types
of methanogens and methanotrophs have preferable growing conditions, which further affect CH, emissions in natural
ecosystems (647071 Methanogens include hydrogenotrophic, acetoclastic, and methylotrophic methanogens [Z472],
Methanotrophs exist under both aerobic and anaerobic conditions. Aerobic methanotrophs are phylogenetically divided into
two main groups: type | (Gammaproteobacteria, e.g., Methylococcaceae) and type |l (Alphaproteobacteria, e.g.,
Methylocystaceae) [BIZAIISITE]  pitrate- or nitrite-dependent I8 and metal-dependent 2 CH, oxidizers, respectively.
Type | methanotrophs tend to be dominant in natural environments with sufficient nutrients and substrates (i.e., relatively
high O, concentration, low CH, concentration) 41441801 \yhereas type Il methanotrophs tend to be abundant in resource-
limited environments with a high affinity for their nutrients and substrates (i.e., relatively low O, concentration, high CH,4
concentration) 7481821 Of note, methanogens and methanotrophs in coastal wetland soils have unique characteristics

that are rarely found in interior wetland soils. Hydrogenotrophic and acetoclastic methanogens are considered dominant in
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natural freshwater wetland soils. However, methylotrophic methanogens are dominant in hypersaline and sulphate-rich
environments including coastal wetlands, and they make different contributions to CH, production [62IE3l84 |n coastal
wetlands, anaerobic methanotrophs include sulphate-dependent methanotrophs B4I851 which might have an important role
in controlling low coastal CH, fluxes. Furthermore, several reports have described the possibility of active CH, production

under aerobic conditions in mangrove forests based on laboratory incubation experiments and field observations 241861,
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